ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniun GIF version

Theorem uniun 3886
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem uniun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1654 . . . 4 (∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
2 elun 3325 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32anbi2i 457 . . . . . 6 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)))
4 andi 822 . . . . . 6 ((𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
53, 4bitri 184 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
65exbii 1631 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
7 eluni 3870 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 3870 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
97, 8orbi12i 768 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
101, 6, 93bitr4i 212 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥 𝐴𝑥 𝐵))
11 eluni 3870 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
12 elun 3325 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1310, 11, 123bitr4i 212 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1413eqriv 2206 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 712   = wceq 1375  wex 1518  wcel 2180  cun 3175   cuni 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-uni 3868
This theorem is referenced by:  unisuc  4481  unisucg  4482
  Copyright terms: Public domain W3C validator