Step | Hyp | Ref
| Expression |
1 | | 19.43 1621 |
. . . 4
⊢
(∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
2 | | elun 3268 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) |
3 | 2 | anbi2i 454 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
4 | | andi 813 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
5 | 3, 4 | bitri 183 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | exbii 1598 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
7 | | eluni 3799 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
8 | | eluni 3799 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐵
↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) |
9 | 7, 8 | orbi12i 759 |
. . . 4
⊢ ((𝑥 ∈ ∪ 𝐴
∨ 𝑥 ∈ ∪ 𝐵)
↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
10 | 1, 6, 9 | 3bitr4i 211 |
. . 3
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
11 | | eluni 3799 |
. . 3
⊢ (𝑥 ∈ ∪ (𝐴
∪ 𝐵) ↔
∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) |
12 | | elun 3268 |
. . 3
⊢ (𝑥 ∈ (∪ 𝐴
∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
13 | 10, 11, 12 | 3bitr4i 211 |
. 2
⊢ (𝑥 ∈ ∪ (𝐴
∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴
∪ ∪ 𝐵)) |
14 | 13 | eqriv 2167 |
1
⊢ ∪ (𝐴
∪ 𝐵) = (∪ 𝐴
∪ ∪ 𝐵) |