| Step | Hyp | Ref
 | Expression | 
| 1 |   | 19.43 1642 | 
. . . 4
⊢
(∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | 
| 2 |   | elun 3304 | 
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | 
| 3 | 2 | anbi2i 457 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) | 
| 4 |   | andi 819 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | 
| 5 | 3, 4 | bitri 184 | 
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | 
| 6 | 5 | exbii 1619 | 
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | 
| 7 |   | eluni 3842 | 
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | 
| 8 |   | eluni 3842 | 
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐵
↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | 
| 9 | 7, 8 | orbi12i 765 | 
. . . 4
⊢ ((𝑥 ∈ ∪ 𝐴
∨ 𝑥 ∈ ∪ 𝐵)
↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | 
| 10 | 1, 6, 9 | 3bitr4i 212 | 
. . 3
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | 
| 11 |   | eluni 3842 | 
. . 3
⊢ (𝑥 ∈ ∪ (𝐴
∪ 𝐵) ↔
∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) | 
| 12 |   | elun 3304 | 
. . 3
⊢ (𝑥 ∈ (∪ 𝐴
∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | 
| 13 | 10, 11, 12 | 3bitr4i 212 | 
. 2
⊢ (𝑥 ∈ ∪ (𝐴
∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴
∪ ∪ 𝐵)) | 
| 14 | 13 | eqriv 2193 | 
1
⊢ ∪ (𝐴
∪ 𝐵) = (∪ 𝐴
∪ ∪ 𝐵) |