ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniun GIF version

Theorem uniun 3646
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem uniun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1560 . . . 4 (∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
2 elun 3125 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32anbi2i 445 . . . . . 6 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)))
4 andi 765 . . . . . 6 ((𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
53, 4bitri 182 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
65exbii 1537 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
7 eluni 3630 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 3630 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
97, 8orbi12i 714 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
101, 6, 93bitr4i 210 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥 𝐴𝑥 𝐵))
11 eluni 3630 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
12 elun 3125 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1310, 11, 123bitr4i 210 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1413eqriv 2080 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 102  wo 662   = wceq 1285  wex 1422  wcel 1434  cun 2982   cuni 3627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-un 2988  df-uni 3628
This theorem is referenced by:  unisuc  4203  unisucg  4204
  Copyright terms: Public domain W3C validator