ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniun GIF version

Theorem uniun 3830
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem uniun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1628 . . . 4 (∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
2 elun 3278 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32anbi2i 457 . . . . . 6 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)))
4 andi 818 . . . . . 6 ((𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
53, 4bitri 184 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
65exbii 1605 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
7 eluni 3814 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 3814 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
97, 8orbi12i 764 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
101, 6, 93bitr4i 212 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥 𝐴𝑥 𝐵))
11 eluni 3814 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
12 elun 3278 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1310, 11, 123bitr4i 212 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1413eqriv 2174 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 708   = wceq 1353  wex 1492  wcel 2148  cun 3129   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-uni 3812
This theorem is referenced by:  unisuc  4415  unisucg  4416
  Copyright terms: Public domain W3C validator