| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssex | GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4151 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ss 3170 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 4168 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V | 
| 4 | eleq1 2259 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 148 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) | 
| 6 | 1, 5 | sylbi 121 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssexi 4171 ssexg 4172 inteximm 4182 exmid1stab 4241 funimaexglem 5341 tfrexlem 6392 elinp 7541 suplocexprlem2b 7781 negfi 11393 ssomct 12662 ssnnctlemct 12663 nninfdc 12670 elcncf 14809 plyval 14968 sbthom 15670 | 
| Copyright terms: Public domain | W3C validator |