ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex GIF version

Theorem ssex 4141
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4122 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1 𝐵 ∈ V
Assertion
Ref Expression
ssex (𝐴𝐵𝐴 ∈ V)

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3143 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ssex.1 . . . 4 𝐵 ∈ V
32inex2 4139 . . 3 (𝐴𝐵) ∈ V
4 eleq1 2240 . . 3 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 148 . 2 ((𝐴𝐵) = 𝐴𝐴 ∈ V)
61, 5sylbi 121 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2738  cin 3129  wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4122
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143
This theorem is referenced by:  ssexi  4142  ssexg  4143  inteximm  4150  exmid1stab  4209  funimaexglem  5300  tfrexlem  6335  elinp  7473  suplocexprlem2b  7713  negfi  11236  ssomct  12446  ssnnctlemct  12447  nninfdc  12454  elcncf  14063  sbthom  14777
  Copyright terms: Public domain W3C validator