ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex GIF version

Theorem ssex 4166
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4147 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1 𝐵 ∈ V
Assertion
Ref Expression
ssex (𝐴𝐵𝐴 ∈ V)

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3166 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ssex.1 . . . 4 𝐵 ∈ V
32inex2 4164 . . 3 (𝐴𝐵) ∈ V
4 eleq1 2256 . . 3 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 148 . 2 ((𝐴𝐵) = 𝐴𝐴 ∈ V)
61, 5sylbi 121 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cin 3152  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166
This theorem is referenced by:  ssexi  4167  ssexg  4168  inteximm  4178  exmid1stab  4237  funimaexglem  5337  tfrexlem  6387  elinp  7534  suplocexprlem2b  7774  negfi  11371  ssomct  12602  ssnnctlemct  12603  nninfdc  12610  elcncf  14728  plyval  14878  sbthom  15516
  Copyright terms: Public domain W3C validator