ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex GIF version

Theorem ssex 4005
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 3986 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1 𝐵 ∈ V
Assertion
Ref Expression
ssex (𝐴𝐵𝐴 ∈ V)

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 3034 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ssex.1 . . . 4 𝐵 ∈ V
32inex2 4003 . . 3 (𝐴𝐵) ∈ V
4 eleq1 2162 . . 3 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 147 . 2 ((𝐴𝐵) = 𝐴𝐴 ∈ V)
61, 5sylbi 120 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  Vcvv 2641  cin 3020  wss 3021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034
This theorem is referenced by:  ssexi  4006  ssexg  4007  inteximm  4014  funimaexglem  5142  tfrexlem  6161  elinp  7183  negfi  10838  elcncf  12473  sbthom  12805
  Copyright terms: Public domain W3C validator