Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind GIF version

Theorem bdfind 13828
Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4576 for a nonconstructive proof of the general case. See findset 13827 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd BOUNDED 𝐴
Assertion
Ref Expression
bdfind ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4 BOUNDED 𝐴
2 bj-omex 13824 . . . 4 ω ∈ V
31, 2bdssex 13784 . . 3 (𝐴 ⊆ ω → 𝐴 ∈ V)
433ad2ant1 1008 . 2 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 ∈ V)
5 findset 13827 . 2 (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
64, 5mpcom 36 1 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116  c0 3409  suc csuc 4343  ωcom 4567  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdan 13697  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766  ax-infvn 13823
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator