![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdfind | GIF version |
Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4442 for a nonconstructive proof of the general case. See findset 12564 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdfind.bd | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdfind | ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfind.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
2 | bj-omex 12561 | . . . 4 ⊢ ω ∈ V | |
3 | 1, 2 | bdssex 12517 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
4 | 3 | 3ad2ant1 967 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
5 | findset 12564 | . 2 ⊢ (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | |
6 | 4, 5 | mpcom 36 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 927 = wceq 1296 ∈ wcel 1445 ∀wral 2370 Vcvv 2633 ⊆ wss 3013 ∅c0 3302 suc csuc 4216 ωcom 4433 BOUNDED wbdc 12455 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-nul 3986 ax-pr 4060 ax-un 4284 ax-bd0 12428 ax-bdan 12430 ax-bdor 12431 ax-bdex 12434 ax-bdeq 12435 ax-bdel 12436 ax-bdsb 12437 ax-bdsep 12499 ax-infvn 12560 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-sn 3472 df-pr 3473 df-uni 3676 df-int 3711 df-suc 4222 df-iom 4434 df-bdc 12456 df-bj-ind 12546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |