| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdfind | GIF version | ||
| Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4690 for a nonconstructive proof of the general case. See findset 16266 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdfind.bd | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdfind | ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdfind.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
| 2 | bj-omex 16263 | . . . 4 ⊢ ω ∈ V | |
| 3 | 1, 2 | bdssex 16223 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
| 4 | 3 | 3ad2ant1 1042 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 5 | findset 16266 | . 2 ⊢ (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | |
| 6 | 4, 5 | mpcom 36 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 suc csuc 4455 ωcom 4681 BOUNDED wbdc 16161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdan 16136 ax-bdor 16137 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 ax-infvn 16262 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |