Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind GIF version

Theorem bdfind 13946
Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4581 for a nonconstructive proof of the general case. See findset 13945 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd BOUNDED 𝐴
Assertion
Ref Expression
bdfind ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4 BOUNDED 𝐴
2 bj-omex 13942 . . . 4 ω ∈ V
31, 2bdssex 13902 . . 3 (𝐴 ⊆ ω → 𝐴 ∈ V)
433ad2ant1 1013 . 2 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 ∈ V)
5 findset 13945 . 2 (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
64, 5mpcom 36 1 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121  c0 3414  suc csuc 4348  ωcom 4572  BOUNDED wbdc 13840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4113  ax-pr 4192  ax-un 4416  ax-bd0 13813  ax-bdan 13815  ax-bdor 13816  ax-bdex 13819  ax-bdeq 13820  ax-bdel 13821  ax-bdsb 13822  ax-bdsep 13884  ax-infvn 13941
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-suc 4354  df-iom 4573  df-bdc 13841  df-bj-ind 13927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator