| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdfind | GIF version | ||
| Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4636 for a nonconstructive proof of the general case. See findset 15675 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdfind.bd | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdfind | ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdfind.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
| 2 | bj-omex 15672 | . . . 4 ⊢ ω ∈ V | |
| 3 | 1, 2 | bdssex 15632 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
| 4 | 3 | 3ad2ant1 1020 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 5 | findset 15675 | . 2 ⊢ (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | |
| 6 | 4, 5 | mpcom 36 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⊆ wss 3157 ∅c0 3451 suc csuc 4401 ωcom 4627 BOUNDED wbdc 15570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4160 ax-pr 4243 ax-un 4469 ax-bd0 15543 ax-bdan 15545 ax-bdor 15546 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 ax-infvn 15671 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-bdc 15571 df-bj-ind 15657 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |