| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdfind | GIF version | ||
| Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4660 for a nonconstructive proof of the general case. See findset 16050 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdfind.bd | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdfind | ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdfind.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
| 2 | bj-omex 16047 | . . . 4 ⊢ ω ∈ V | |
| 3 | 1, 2 | bdssex 16007 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
| 4 | 3 | 3ad2ant1 1021 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 5 | findset 16050 | . 2 ⊢ (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | |
| 6 | 4, 5 | mpcom 36 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3170 ∅c0 3464 suc csuc 4425 ωcom 4651 BOUNDED wbdc 15945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4181 ax-pr 4264 ax-un 4493 ax-bd0 15918 ax-bdan 15920 ax-bdor 15921 ax-bdex 15924 ax-bdeq 15925 ax-bdel 15926 ax-bdsb 15927 ax-bdsep 15989 ax-infvn 16046 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-suc 4431 df-iom 4652 df-bdc 15946 df-bj-ind 16032 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |