ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri GIF version

Theorem fimax2gtri 7024
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po (𝜑𝑅 Po 𝐴)
fimax2gtri.tri (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
fimax2gtri.fin (𝜑𝐴 ∈ Fin)
fimax2gtri.n0 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fimax2gtri (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fimax2gtri
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2705 . . 3 (𝑤 = ∅ → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
21rexbidv 2509 . 2 (𝑤 = ∅ → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
3 raleq 2705 . . 3 (𝑤 = 𝑢 → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝑢 ¬ 𝑥𝑅𝑦))
43rexbidv 2509 . 2 (𝑤 = 𝑢 → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦))
5 raleq 2705 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
65rexbidv 2509 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
7 raleq 2705 . . 3 (𝑤 = 𝐴 → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
87rexbidv 2509 . 2 (𝑤 = 𝐴 → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
9 fimax2gtri.n0 . . . . 5 (𝜑𝐴 ≠ ∅)
10 fimax2gtri.fin . . . . . 6 (𝜑𝐴 ∈ Fin)
11 fin0 7008 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
1210, 11syl 14 . . . . 5 (𝜑 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
139, 12mpbid 147 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
14 ral0 3570 . . . . . 6 𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦
1514biantru 302 . . . . 5 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1615exbii 1629 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1713, 16sylib 122 . . 3 (𝜑 → ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
18 df-rex 2492 . . 3 (∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1917, 18sylibr 134 . 2 (𝜑 → ∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦)
20 breq1 4062 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
2120notbid 669 . . . . 5 (𝑥 = 𝑧 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑧𝑅𝑦))
2221ralbidv 2508 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑢 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦))
2322cbvrexv 2743 . . 3 (∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦 ↔ ∃𝑧𝐴𝑦𝑢 ¬ 𝑧𝑅𝑦)
24 fimax2gtri.po . . . . . . 7 (𝜑𝑅 Po 𝐴)
2524ad4antr 494 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑅 Po 𝐴)
26 fimax2gtri.tri . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2726ad4antr 494 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2810ad4antr 494 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝐴 ∈ Fin)
299ad4antr 494 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝐴 ≠ ∅)
30 simp-4r 542 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑢 ∈ Fin)
31 simprl 529 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
3231ad2antrr 488 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑢𝐴)
33 simplr 528 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑧𝐴)
34 simprr 531 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
3534ad2antrr 488 . . . . . . 7 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑣 ∈ (𝐴𝑢))
3635eldifad 3185 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑣𝐴)
3735eldifbd 3186 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ¬ 𝑣𝑢)
38 simpr 110 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∀𝑦𝑢 ¬ 𝑧𝑅𝑦)
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 7023 . . . . 5 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦)
4039ex 115 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) → (∀𝑦𝑢 ¬ 𝑧𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
4140rexlimdva 2625 . . 3 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (∃𝑧𝐴𝑦𝑢 ¬ 𝑧𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
4223, 41biimtrid 152 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
432, 4, 6, 8, 19, 42, 10findcard2sd 7015 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 980   = wceq 1373  wex 1516  wcel 2178  wne 2378  wral 2486  wrex 2487  cdif 3171  cun 3172  wss 3174  c0 3468  {csn 3643   class class class wbr 4059   Po wpo 4359  Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  fimaxq  11009
  Copyright terms: Public domain W3C validator