ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri GIF version

Theorem fimax2gtri 6795
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po (𝜑𝑅 Po 𝐴)
fimax2gtri.tri (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
fimax2gtri.fin (𝜑𝐴 ∈ Fin)
fimax2gtri.n0 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fimax2gtri (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fimax2gtri
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2626 . . 3 (𝑤 = ∅ → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
21rexbidv 2438 . 2 (𝑤 = ∅ → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
3 raleq 2626 . . 3 (𝑤 = 𝑢 → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝑢 ¬ 𝑥𝑅𝑦))
43rexbidv 2438 . 2 (𝑤 = 𝑢 → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦))
5 raleq 2626 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
65rexbidv 2438 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
7 raleq 2626 . . 3 (𝑤 = 𝐴 → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
87rexbidv 2438 . 2 (𝑤 = 𝐴 → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
9 fimax2gtri.n0 . . . . 5 (𝜑𝐴 ≠ ∅)
10 fimax2gtri.fin . . . . . 6 (𝜑𝐴 ∈ Fin)
11 fin0 6779 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
1210, 11syl 14 . . . . 5 (𝜑 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
139, 12mpbid 146 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
14 ral0 3464 . . . . . 6 𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦
1514biantru 300 . . . . 5 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1615exbii 1584 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1713, 16sylib 121 . . 3 (𝜑 → ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
18 df-rex 2422 . . 3 (∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1917, 18sylibr 133 . 2 (𝜑 → ∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦)
20 breq1 3932 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
2120notbid 656 . . . . 5 (𝑥 = 𝑧 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑧𝑅𝑦))
2221ralbidv 2437 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑢 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦))
2322cbvrexv 2655 . . 3 (∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦 ↔ ∃𝑧𝐴𝑦𝑢 ¬ 𝑧𝑅𝑦)
24 fimax2gtri.po . . . . . . 7 (𝜑𝑅 Po 𝐴)
2524ad4antr 485 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑅 Po 𝐴)
26 fimax2gtri.tri . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2726ad4antr 485 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2810ad4antr 485 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝐴 ∈ Fin)
299ad4antr 485 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝐴 ≠ ∅)
30 simp-4r 531 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑢 ∈ Fin)
31 simprl 520 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
3231ad2antrr 479 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑢𝐴)
33 simplr 519 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑧𝐴)
34 simprr 521 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
3534ad2antrr 479 . . . . . . 7 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑣 ∈ (𝐴𝑢))
3635eldifad 3082 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑣𝐴)
3735eldifbd 3083 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ¬ 𝑣𝑢)
38 simpr 109 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∀𝑦𝑢 ¬ 𝑧𝑅𝑦)
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 6794 . . . . 5 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦)
4039ex 114 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) → (∀𝑦𝑢 ¬ 𝑧𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
4140rexlimdva 2549 . . 3 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (∃𝑧𝐴𝑦𝑢 ¬ 𝑧𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
4223, 41syl5bi 151 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
432, 4, 6, 8, 19, 42, 10findcard2sd 6786 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 961   = wceq 1331  wex 1468  wcel 1480  wne 2308  wral 2416  wrex 2417  cdif 3068  cun 3069  wss 3071  c0 3363  {csn 3527   class class class wbr 3929   Po wpo 4216  Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  fimaxq  10585
  Copyright terms: Public domain W3C validator