ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimax2gtri GIF version

Theorem fimax2gtri 6867
Description: A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
fimax2gtri.po (𝜑𝑅 Po 𝐴)
fimax2gtri.tri (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
fimax2gtri.fin (𝜑𝐴 ∈ Fin)
fimax2gtri.n0 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fimax2gtri (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fimax2gtri
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2661 . . 3 (𝑤 = ∅ → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
21rexbidv 2467 . 2 (𝑤 = ∅ → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
3 raleq 2661 . . 3 (𝑤 = 𝑢 → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝑢 ¬ 𝑥𝑅𝑦))
43rexbidv 2467 . 2 (𝑤 = 𝑢 → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦))
5 raleq 2661 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
65rexbidv 2467 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
7 raleq 2661 . . 3 (𝑤 = 𝐴 → (∀𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
87rexbidv 2467 . 2 (𝑤 = 𝐴 → (∃𝑥𝐴𝑦𝑤 ¬ 𝑥𝑅𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
9 fimax2gtri.n0 . . . . 5 (𝜑𝐴 ≠ ∅)
10 fimax2gtri.fin . . . . . 6 (𝜑𝐴 ∈ Fin)
11 fin0 6851 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
1210, 11syl 14 . . . . 5 (𝜑 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
139, 12mpbid 146 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
14 ral0 3510 . . . . . 6 𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦
1514biantru 300 . . . . 5 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1615exbii 1593 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1713, 16sylib 121 . . 3 (𝜑 → ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
18 df-rex 2450 . . 3 (∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦))
1917, 18sylibr 133 . 2 (𝜑 → ∃𝑥𝐴𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦)
20 breq1 3985 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
2120notbid 657 . . . . 5 (𝑥 = 𝑧 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑧𝑅𝑦))
2221ralbidv 2466 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑢 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦))
2322cbvrexv 2693 . . 3 (∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦 ↔ ∃𝑧𝐴𝑦𝑢 ¬ 𝑧𝑅𝑦)
24 fimax2gtri.po . . . . . . 7 (𝜑𝑅 Po 𝐴)
2524ad4antr 486 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑅 Po 𝐴)
26 fimax2gtri.tri . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2726ad4antr 486 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2810ad4antr 486 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝐴 ∈ Fin)
299ad4antr 486 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝐴 ≠ ∅)
30 simp-4r 532 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑢 ∈ Fin)
31 simprl 521 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
3231ad2antrr 480 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑢𝐴)
33 simplr 520 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑧𝐴)
34 simprr 522 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
3534ad2antrr 480 . . . . . . 7 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑣 ∈ (𝐴𝑢))
3635eldifad 3127 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → 𝑣𝐴)
3735eldifbd 3128 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ¬ 𝑣𝑢)
38 simpr 109 . . . . . 6 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∀𝑦𝑢 ¬ 𝑧𝑅𝑦)
3925, 27, 28, 29, 30, 32, 33, 36, 37, 38fimax2gtrilemstep 6866 . . . . 5 (((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) ∧ ∀𝑦𝑢 ¬ 𝑧𝑅𝑦) → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦)
4039ex 114 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑧𝐴) → (∀𝑦𝑢 ¬ 𝑧𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
4140rexlimdva 2583 . . 3 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (∃𝑧𝐴𝑦𝑢 ¬ 𝑧𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
4223, 41syl5bi 151 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (∃𝑥𝐴𝑦𝑢 ¬ 𝑥𝑅𝑦 → ∃𝑥𝐴𝑦 ∈ (𝑢 ∪ {𝑣}) ¬ 𝑥𝑅𝑦))
432, 4, 6, 8, 19, 42, 10findcard2sd 6858 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 967   = wceq 1343  wex 1480  wcel 2136  wne 2336  wral 2444  wrex 2445  cdif 3113  cun 3114  wss 3116  c0 3409  {csn 3576   class class class wbr 3982   Po wpo 4272  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  fimaxq  10740
  Copyright terms: Public domain W3C validator