Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resopab | GIF version |
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
Ref | Expression |
---|---|
resopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4623 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) | |
2 | df-xp 4617 | . . . . . 6 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} | |
3 | vex 2733 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | biantru 300 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)) |
5 | 4 | opabbii 4056 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} |
6 | 2, 5 | eqtr4i 2194 | . . . . 5 ⊢ (𝐴 × V) = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} |
7 | 6 | ineq2i 3325 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) |
8 | incom 3319 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴}) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
9 | 7, 8 | eqtri 2191 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
10 | inopab 4743 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝐴} ∩ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
11 | 9, 10 | eqtri 2191 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ (𝐴 × V)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
12 | 1, 11 | eqtri 2191 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∩ cin 3120 {copab 4049 × cxp 4609 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: resopab2 4938 opabresid 4944 mptpreima 5104 isarep2 5285 resoprab 5949 df1st2 6198 df2nd2 6199 |
Copyright terms: Public domain | W3C validator |