ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab GIF version

Theorem resopab 4928
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4616 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V))
2 df-xp 4610 . . . . . 6 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
3 vex 2729 . . . . . . . 8 𝑦 ∈ V
43biantru 300 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴𝑦 ∈ V))
54opabbii 4049 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ V)}
62, 5eqtr4i 2189 . . . . 5 (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}
76ineq2i 3320 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴})
8 incom 3314 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴}) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
97, 8eqtri 2186 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
10 inopab 4736 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
119, 10eqtri 2186 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
121, 11eqtri 2186 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cin 3115  {copab 4042   × cxp 4602  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  resopab2  4931  opabresid  4937  mptpreima  5097  isarep2  5275  resoprab  5938  df1st2  6187  df2nd2  6188
  Copyright terms: Public domain W3C validator