![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resopab | GIF version |
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
Ref | Expression |
---|---|
resopab | ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4640 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) | |
2 | df-xp 4634 | . . . . . 6 ⊢ (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} | |
3 | vex 2742 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | biantru 302 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)) |
5 | 4 | opabbii 4072 | . . . . . 6 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ V)} |
6 | 2, 5 | eqtr4i 2201 | . . . . 5 ⊢ (𝐴 × V) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴} |
7 | 6 | ineq2i 3335 | . . . 4 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴}) |
8 | incom 3329 | . . . 4 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴}) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
9 | 7, 8 | eqtri 2198 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
10 | inopab 4761 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝐴} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
11 | 9, 10 | eqtri 2198 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ (𝐴 × V)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
12 | 1, 11 | eqtri 2198 | 1 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 {copab 4065 × cxp 4626 ↾ cres 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 df-rel 4635 df-res 4640 |
This theorem is referenced by: resopab2 4956 opabresid 4962 mptpreima 5124 isarep2 5305 resoprab 5974 df1st2 6223 df2nd2 6224 |
Copyright terms: Public domain | W3C validator |