| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfvex | GIF version | ||
| Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptfvex | ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3087 | . . 3 ⊢ (𝑦 = 𝐶 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) | |
| 2 | fvmpt2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3093 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 3, 4, 5 | cbvmpt 4128 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 7 | 2, 6 | eqtri 2217 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | 1, 7 | fvmptss2 5636 | . 2 ⊢ (𝐹‘𝐶) ⊆ ⦋𝐶 / 𝑥⦌𝐵 |
| 9 | elex 2774 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 10 | 9 | alimi 1469 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ 𝑉 → ∀𝑥 𝐵 ∈ V) |
| 11 | 3 | nfel1 2350 | . . . . . 6 ⊢ Ⅎ𝑦 𝐵 ∈ V |
| 12 | 4 | nfel1 2350 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ V |
| 13 | 5 | eleq1d 2265 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ V)) |
| 14 | 11, 12, 13 | cbval 1768 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ V ↔ ∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V) |
| 15 | 10, 14 | sylib 122 | . . . 4 ⊢ (∀𝑥 𝐵 ∈ 𝑉 → ∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V) |
| 16 | 1 | eleq1d 2265 | . . . . 5 ⊢ (𝑦 = 𝐶 → (⦋𝑦 / 𝑥⦌𝐵 ∈ V ↔ ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
| 17 | 16 | spcgv 2851 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V → ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
| 18 | 15, 17 | syl5 32 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (∀𝑥 𝐵 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
| 19 | 18 | impcom 125 | . 2 ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ⦋𝐶 / 𝑥⦌𝐵 ∈ V) |
| 20 | ssexg 4172 | . 2 ⊢ (((𝐹‘𝐶) ⊆ ⦋𝐶 / 𝑥⦌𝐵 ∧ ⦋𝐶 / 𝑥⦌𝐵 ∈ V) → (𝐹‘𝐶) ∈ V) | |
| 21 | 8, 19, 20 | sylancr 414 | 1 ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘𝐶) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⦋csb 3084 ⊆ wss 3157 ↦ cmpt 4094 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-iota 5219 df-fun 5260 df-fv 5266 |
| This theorem is referenced by: mpofvex 6263 xpcomco 6885 lssex 13910 mopnset 14108 metuex 14111 |
| Copyright terms: Public domain | W3C validator |