ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfvex GIF version

Theorem mptfvex 5579
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptfvex ((∀𝑥 𝐵𝑉𝐶𝑊) → (𝐹𝐶) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptfvex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3052 . . 3 (𝑦 = 𝐶𝑦 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
2 fvmpt2.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
3 nfcv 2312 . . . . 5 𝑦𝐵
4 nfcsb1v 3082 . . . . 5 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3058 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 4082 . . . 4 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
72, 6eqtri 2191 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
81, 7fvmptss2 5569 . 2 (𝐹𝐶) ⊆ 𝐶 / 𝑥𝐵
9 elex 2741 . . . . . 6 (𝐵𝑉𝐵 ∈ V)
109alimi 1448 . . . . 5 (∀𝑥 𝐵𝑉 → ∀𝑥 𝐵 ∈ V)
113nfel1 2323 . . . . . 6 𝑦 𝐵 ∈ V
124nfel1 2323 . . . . . 6 𝑥𝑦 / 𝑥𝐵 ∈ V
135eleq1d 2239 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ∈ V ↔ 𝑦 / 𝑥𝐵 ∈ V))
1411, 12, 13cbval 1747 . . . . 5 (∀𝑥 𝐵 ∈ V ↔ ∀𝑦𝑦 / 𝑥𝐵 ∈ V)
1510, 14sylib 121 . . . 4 (∀𝑥 𝐵𝑉 → ∀𝑦𝑦 / 𝑥𝐵 ∈ V)
161eleq1d 2239 . . . . 5 (𝑦 = 𝐶 → (𝑦 / 𝑥𝐵 ∈ V ↔ 𝐶 / 𝑥𝐵 ∈ V))
1716spcgv 2817 . . . 4 (𝐶𝑊 → (∀𝑦𝑦 / 𝑥𝐵 ∈ V → 𝐶 / 𝑥𝐵 ∈ V))
1815, 17syl5 32 . . 3 (𝐶𝑊 → (∀𝑥 𝐵𝑉𝐶 / 𝑥𝐵 ∈ V))
1918impcom 124 . 2 ((∀𝑥 𝐵𝑉𝐶𝑊) → 𝐶 / 𝑥𝐵 ∈ V)
20 ssexg 4126 . 2 (((𝐹𝐶) ⊆ 𝐶 / 𝑥𝐵𝐶 / 𝑥𝐵 ∈ V) → (𝐹𝐶) ∈ V)
218, 19, 20sylancr 412 1 ((∀𝑥 𝐵𝑉𝐶𝑊) → (𝐹𝐶) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730  csb 3049  wss 3121  cmpt 4048  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-iota 5158  df-fun 5198  df-fv 5204
This theorem is referenced by:  mpofvex  6180  xpcomco  6802
  Copyright terms: Public domain W3C validator