| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfvex | GIF version | ||
| Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptfvex | ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3097 | . . 3 ⊢ (𝑦 = 𝐶 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) | |
| 2 | fvmpt2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3127 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3103 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 3, 4, 5 | cbvmpt 4143 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 7 | 2, 6 | eqtri 2227 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | 1, 7 | fvmptss2 5661 | . 2 ⊢ (𝐹‘𝐶) ⊆ ⦋𝐶 / 𝑥⦌𝐵 |
| 9 | elex 2784 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 10 | 9 | alimi 1479 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ 𝑉 → ∀𝑥 𝐵 ∈ V) |
| 11 | 3 | nfel1 2360 | . . . . . 6 ⊢ Ⅎ𝑦 𝐵 ∈ V |
| 12 | 4 | nfel1 2360 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ V |
| 13 | 5 | eleq1d 2275 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ V)) |
| 14 | 11, 12, 13 | cbval 1778 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ V ↔ ∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V) |
| 15 | 10, 14 | sylib 122 | . . . 4 ⊢ (∀𝑥 𝐵 ∈ 𝑉 → ∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V) |
| 16 | 1 | eleq1d 2275 | . . . . 5 ⊢ (𝑦 = 𝐶 → (⦋𝑦 / 𝑥⦌𝐵 ∈ V ↔ ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
| 17 | 16 | spcgv 2861 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V → ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
| 18 | 15, 17 | syl5 32 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (∀𝑥 𝐵 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
| 19 | 18 | impcom 125 | . 2 ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ⦋𝐶 / 𝑥⦌𝐵 ∈ V) |
| 20 | ssexg 4187 | . 2 ⊢ (((𝐹‘𝐶) ⊆ ⦋𝐶 / 𝑥⦌𝐵 ∧ ⦋𝐶 / 𝑥⦌𝐵 ∈ V) → (𝐹‘𝐶) ∈ V) | |
| 21 | 8, 19, 20 | sylancr 414 | 1 ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘𝐶) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⦋csb 3094 ⊆ wss 3167 ↦ cmpt 4109 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-iota 5237 df-fun 5278 df-fv 5284 |
| This theorem is referenced by: mpofvex 6298 xpcomco 6928 lssex 14160 mopnset 14358 metuex 14361 |
| Copyright terms: Public domain | W3C validator |