![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptfvex | GIF version |
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptfvex | ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3083 | . . 3 ⊢ (𝑦 = 𝐶 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) | |
2 | fvmpt2.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3113 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3089 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 3, 4, 5 | cbvmpt 4124 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 2, 6 | eqtri 2214 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 1, 7 | fvmptss2 5632 | . 2 ⊢ (𝐹‘𝐶) ⊆ ⦋𝐶 / 𝑥⦌𝐵 |
9 | elex 2771 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
10 | 9 | alimi 1466 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ 𝑉 → ∀𝑥 𝐵 ∈ V) |
11 | 3 | nfel1 2347 | . . . . . 6 ⊢ Ⅎ𝑦 𝐵 ∈ V |
12 | 4 | nfel1 2347 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ V |
13 | 5 | eleq1d 2262 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ V)) |
14 | 11, 12, 13 | cbval 1765 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ V ↔ ∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V) |
15 | 10, 14 | sylib 122 | . . . 4 ⊢ (∀𝑥 𝐵 ∈ 𝑉 → ∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V) |
16 | 1 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = 𝐶 → (⦋𝑦 / 𝑥⦌𝐵 ∈ V ↔ ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
17 | 16 | spcgv 2847 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (∀𝑦⦋𝑦 / 𝑥⦌𝐵 ∈ V → ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
18 | 15, 17 | syl5 32 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (∀𝑥 𝐵 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌𝐵 ∈ V)) |
19 | 18 | impcom 125 | . 2 ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ⦋𝐶 / 𝑥⦌𝐵 ∈ V) |
20 | ssexg 4168 | . 2 ⊢ (((𝐹‘𝐶) ⊆ ⦋𝐶 / 𝑥⦌𝐵 ∧ ⦋𝐶 / 𝑥⦌𝐵 ∈ V) → (𝐹‘𝐶) ∈ V) | |
21 | 8, 19, 20 | sylancr 414 | 1 ⊢ ((∀𝑥 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹‘𝐶) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⦋csb 3080 ⊆ wss 3153 ↦ cmpt 4090 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-iota 5215 df-fun 5256 df-fv 5262 |
This theorem is referenced by: mpofvex 6256 xpcomco 6880 lssex 13850 |
Copyright terms: Public domain | W3C validator |