Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adddir | GIF version |
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
Ref | Expression |
---|---|
adddir | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddi 7858 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵))) | |
2 | 1 | 3coml 1192 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵))) |
3 | addcl 7851 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | mulcom 7855 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵))) | |
5 | 3, 4 | sylan 281 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵))) |
6 | 5 | 3impa 1177 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵))) |
7 | mulcom 7855 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) | |
8 | 7 | 3adant2 1001 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
9 | mulcom 7855 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) | |
10 | 9 | 3adant1 1000 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
11 | 8, 10 | oveq12d 5839 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵))) |
12 | 2, 6, 11 | 3eqtr4d 2200 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 (class class class)co 5821 ℂcc 7724 + caddc 7729 · cmul 7731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-addcl 7822 ax-mulcom 7827 ax-distr 7830 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 |
This theorem is referenced by: mulid1 7869 adddiri 7883 adddird 7897 muladd11 8002 muladd 8253 demoivreALT 11663 dvds2ln 11712 dvds2add 11713 odd2np1lem 11755 sincosq1eq 13131 abssinper 13138 |
Copyright terms: Public domain | W3C validator |