| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnex | GIF version | ||
| Description: Alias for ax-cnex 7987. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnex | ⊢ ℂ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnex 7987 | 1 ⊢ ℂ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7894 |
| This theorem was proved from axioms: ax-cnex 7987 |
| This theorem is referenced by: reex 8030 cnelprrecn 8032 pnfnre 8085 mnfnre 8086 pnfxr 8096 nnex 9013 zex 9352 qex 9723 addex 9743 mulex 9744 ovshftex 11001 cndsex 14185 cnfldstr 14190 cnfldbas 14192 mpocnfldadd 14193 mpocnfldmul 14195 cnfldcj 14197 expghmap 14239 lmfval 14512 lmbrf 14535 lmfss 14564 lmres 14568 lmtopcnp 14570 cnmet 14850 cncfval 14892 elcncf 14893 limcrcl 14978 limccl 14979 ellimc3apf 14980 limccnp2lem 14996 limccnp2cntop 14997 reldvg 14999 dvfvalap 15001 dvbss 15005 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvcnp2cntop 15019 dvaddxxbr 15021 dvmulxxbr 15022 dvaddxx 15023 dvmulxx 15024 dviaddf 15025 dvimulf 15026 dvcoapbr 15027 dvcjbr 15028 dvcj 15029 dvfre 15030 dvexp 15031 dvrecap 15033 dvmptclx 15038 dvef 15047 plyval 15052 elply 15054 elply2 15055 plyf 15057 plyss 15058 elplyr 15060 plyaddlem1 15067 plymullem1 15068 plyaddlem 15069 plymullem 15070 plysub 15073 plycolemc 15078 plyco 15079 plycj 15081 |
| Copyright terms: Public domain | W3C validator |