| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvmptsubcn | GIF version | ||
| Description: Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| dvmptcmulcn.a | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) |
| dvmptcmulcn.b | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉) |
| dvmptcmulcn.da | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) |
| dvmptsubcn.c | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) |
| dvmptsubcn.d | ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊) |
| dvmptsubcn.dc | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷)) |
| Ref | Expression |
|---|---|
| dvmptsubcn | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnelprrecn 8081 | . . . 4 ⊢ ℂ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
| 3 | dvmptcmulcn.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | dvmptcmulcn.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ 𝑉) | |
| 5 | dvmptcmulcn.da | . . 3 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵)) | |
| 6 | ssidd 3218 | . . 3 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
| 7 | dvmptsubcn.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) | |
| 8 | 7 | negcld 8390 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → -𝐶 ∈ ℂ) |
| 9 | dvmptsubcn.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ 𝑊) | |
| 10 | dvmptsubcn.dc | . . . . 5 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷)) | |
| 11 | 2, 7, 9, 10, 6 | dvmptclx 15265 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐷 ∈ ℂ) |
| 12 | 11 | negcld 8390 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → -𝐷 ∈ ℂ) |
| 13 | 7, 9, 10 | dvmptnegcn 15269 | . . 3 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐶)) = (𝑥 ∈ ℂ ↦ -𝐷)) |
| 14 | 2, 3, 4, 5, 6, 8, 12, 13 | dvmptaddx 15266 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 + -𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 + -𝐷))) |
| 15 | 3, 7 | negsubd 8409 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴 + -𝐶) = (𝐴 − 𝐶)) |
| 16 | 15 | mpteq2dva 4142 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐴 + -𝐶)) = (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) |
| 17 | 16 | oveq2d 5973 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 + -𝐶))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶)))) |
| 18 | 2, 3, 4, 5, 6 | dvmptclx 15265 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
| 19 | 18, 11 | negsubd 8409 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐵 + -𝐷) = (𝐵 − 𝐷)) |
| 20 | 19 | mpteq2dva 4142 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 + -𝐷)) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) |
| 21 | 14, 17, 20 | 3eqtr3d 2247 | 1 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴 − 𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵 − 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cpr 3639 ↦ cmpt 4113 (class class class)co 5957 ℂcc 7943 ℝcr 7944 + caddc 7948 − cmin 8263 -cneg 8264 D cdv 15202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 ax-addf 8067 ax-mulf 8068 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-map 6750 df-pm 6751 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-xneg 9914 df-xadd 9915 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-rest 13148 df-topgen 13167 df-psmet 14380 df-xmet 14381 df-met 14382 df-bl 14383 df-mopn 14384 df-top 14545 df-topon 14558 df-bases 14590 df-ntr 14643 df-cn 14735 df-cnp 14736 df-tx 14800 df-cncf 15118 df-limced 15203 df-dvap 15204 |
| This theorem is referenced by: dvef 15274 |
| Copyright terms: Public domain | W3C validator |