| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitmulclb | GIF version | ||
| Description: Reversal of unitmulcl 14042 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| unitmulcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitmulcl.2 | ⊢ · = (.r‘𝑅) |
| unitmulclb.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| unitmulclb | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ CRing) | |
| 2 | unitmulclb.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 4 | eqid 2209 | . . . . . . 7 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∥r‘𝑅) = (∥r‘𝑅)) |
| 6 | 1 | crngringd 13938 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 7 | ringsrg 13976 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ SRing) |
| 9 | unitmulcl.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → · = (.r‘𝑅)) |
| 11 | simp2 1003 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 12 | simp3 1004 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 13 | 3, 5, 8, 10, 11, 12 | dvdsrmuld 14025 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑌 · 𝑋)) |
| 14 | 2, 9 | crngcom 13943 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) |
| 15 | 13, 14 | breqtrrd 4090 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑋 · 𝑌)) |
| 16 | unitmulcl.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 17 | 16, 4 | dvdsunit 14041 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋(∥r‘𝑅)(𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 18 | 17 | 3expia 1210 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋(∥r‘𝑅)(𝑋 · 𝑌)) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
| 19 | 1, 15, 18 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
| 20 | 3, 5, 8, 10, 12, 11 | dvdsrmuld 14025 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) |
| 21 | 16, 4 | dvdsunit 14041 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑌(∥r‘𝑅)(𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| 22 | 21 | 3expia 1210 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
| 23 | 1, 20, 22 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
| 24 | 19, 23 | jcad 307 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
| 25 | crngring 13937 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 26 | 25 | 3ad2ant1 1023 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 27 | 16, 9 | unitmulcl 14042 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) |
| 28 | 27 | 3expib 1211 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈)) |
| 29 | 26, 28 | syl 14 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈)) |
| 30 | 24, 29 | impbid 129 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 .rcmulr 13077 SRingcsrg 13892 Ringcrg 13925 CRingccrg 13926 ∥rcdsr 14015 Unitcui 14016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-tpos 6361 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-cmn 13789 df-abl 13790 df-mgp 13850 df-ur 13889 df-srg 13893 df-ring 13927 df-cring 13928 df-oppr 13997 df-dvdsr 14018 df-unit 14019 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |