![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitmulclb | GIF version |
Description: Reversal of unitmulcl 13612 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
unitmulcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitmulcl.2 | ⊢ · = (.r‘𝑅) |
unitmulclb.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
unitmulclb | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ CRing) | |
2 | unitmulclb.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
4 | eqid 2193 | . . . . . . 7 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
5 | 4 | a1i 9 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∥r‘𝑅) = (∥r‘𝑅)) |
6 | 1 | crngringd 13508 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
7 | ringsrg 13546 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ SRing) |
9 | unitmulcl.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
10 | 9 | a1i 9 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → · = (.r‘𝑅)) |
11 | simp2 1000 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | simp3 1001 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
13 | 3, 5, 8, 10, 11, 12 | dvdsrmuld 13595 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑌 · 𝑋)) |
14 | 2, 9 | crngcom 13513 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) |
15 | 13, 14 | breqtrrd 4058 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(∥r‘𝑅)(𝑋 · 𝑌)) |
16 | unitmulcl.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
17 | 16, 4 | dvdsunit 13611 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋(∥r‘𝑅)(𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
18 | 17 | 3expia 1207 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋(∥r‘𝑅)(𝑋 · 𝑌)) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
19 | 1, 15, 18 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
20 | 3, 5, 8, 10, 12, 11 | dvdsrmuld 13595 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) |
21 | 16, 4 | dvdsunit 13611 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑌(∥r‘𝑅)(𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
22 | 21 | 3expia 1207 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑌(∥r‘𝑅)(𝑋 · 𝑌)) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
23 | 1, 20, 22 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑌 ∈ 𝑈)) |
24 | 19, 23 | jcad 307 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
25 | crngring 13507 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
26 | 25 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
27 | 16, 9 | unitmulcl 13612 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) |
28 | 27 | 3expib 1208 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈)) |
29 | 26, 28 | syl 14 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈)) |
30 | 24, 29 | impbid 129 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 .rcmulr 12699 SRingcsrg 13462 Ringcrg 13495 CRingccrg 13496 ∥rcdsr 13585 Unitcui 13586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-cring 13498 df-oppr 13567 df-dvdsr 13588 df-unit 13589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |