Proof of Theorem rdivmuldivd
Step | Hyp | Ref
| Expression |
1 | | dvrdir.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
2 | 1 | a1i 9 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
3 | | rdivmuldivd.p |
. . . . . 6
⊢ · =
(.r‘𝑅) |
4 | 3 | a1i 9 |
. . . . 5
⊢ (𝜑 → · =
(.r‘𝑅)) |
5 | | dvrdir.u |
. . . . . 6
⊢ 𝑈 = (Unit‘𝑅) |
6 | 5 | a1i 9 |
. . . . 5
⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
7 | | eqidd 2178 |
. . . . 5
⊢ (𝜑 →
(invr‘𝑅) =
(invr‘𝑅)) |
8 | | dvrdir.t |
. . . . . 6
⊢ / =
(/r‘𝑅) |
9 | 8 | a1i 9 |
. . . . 5
⊢ (𝜑 → / =
(/r‘𝑅)) |
10 | | rdivmuldivd.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
11 | 10 | crngringd 13198 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | | rdivmuldivd.a |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
13 | | rdivmuldivd.b |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
14 | 2, 4, 6, 7, 9, 11,
12, 13 | dvrvald 13309 |
. . . 4
⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 ·
((invr‘𝑅)‘𝑌))) |
15 | 14 | oveq1d 5893 |
. . 3
⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊))) |
16 | | ringsrg 13230 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
17 | 11, 16 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ SRing) |
18 | 2, 6, 17 | unitssd 13284 |
. . . . 5
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
19 | | eqid 2177 |
. . . . . . 7
⊢
(invr‘𝑅) = (invr‘𝑅) |
20 | 5, 19 | unitinvcl 13298 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
21 | 11, 13, 20 | syl2anc 411 |
. . . . 5
⊢ (𝜑 →
((invr‘𝑅)‘𝑌) ∈ 𝑈) |
22 | 18, 21 | sseldd 3158 |
. . . 4
⊢ (𝜑 →
((invr‘𝑅)‘𝑌) ∈ 𝐵) |
23 | | rdivmuldivd.c |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
24 | | rdivmuldivd.d |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑈) |
25 | 1, 5, 8 | dvrcl 13310 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝑈) → (𝑍 / 𝑊) ∈ 𝐵) |
26 | 11, 23, 24, 25 | syl3anc 1238 |
. . . 4
⊢ (𝜑 → (𝑍 / 𝑊) ∈ 𝐵) |
27 | 1, 3 | ringass 13205 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 ·
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)))) |
28 | 11, 12, 22, 26, 27 | syl13anc 1240 |
. . 3
⊢ (𝜑 → ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 ·
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)))) |
29 | 1, 3 | crngcom 13203 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧
((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) |
30 | 10, 22, 26, 29 | syl3anc 1238 |
. . . 4
⊢ (𝜑 →
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) |
31 | 30 | oveq2d 5894 |
. . 3
⊢ (𝜑 → (𝑋 ·
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
32 | 15, 28, 31 | 3eqtrd 2214 |
. 2
⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
33 | | eqid 2177 |
. . . . . . . . 9
⊢
((mulGrp‘𝑅)
↾s 𝑈) =
((mulGrp‘𝑅)
↾s 𝑈) |
34 | 5, 33 | unitgrp 13291 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp) |
35 | 11, 34 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
36 | | eqidd 2178 |
. . . . . . . . 9
⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)) |
37 | 6, 36, 17 | unitgrpbasd 13290 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
38 | 13, 37 | eleqtrd 2256 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
39 | 24, 37 | eleqtrd 2256 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
40 | | eqid 2177 |
. . . . . . . 8
⊢
(Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
41 | | eqid 2177 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) =
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
42 | | eqid 2177 |
. . . . . . . 8
⊢
(invg‘((mulGrp‘𝑅) ↾s 𝑈)) =
(invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
43 | 40, 41, 42 | grpinvadd 12954 |
. . . . . . 7
⊢
((((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp ∧ 𝑌 ∈
(Base‘((mulGrp‘𝑅) ↾s 𝑈)) ∧ 𝑊 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) →
((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) =
(((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌))) |
44 | 35, 38, 39, 43 | syl3anc 1238 |
. . . . . 6
⊢ (𝜑 →
((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) =
(((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌))) |
45 | 6, 36, 7, 11 | invrfvald 13297 |
. . . . . . 7
⊢ (𝜑 →
(invr‘𝑅) =
(invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
46 | 45 | fveq1d 5519 |
. . . . . 6
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) =
((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))) |
47 | 45 | fveq1d 5519 |
. . . . . . 7
⊢ (𝜑 →
((invr‘𝑅)‘𝑊) =
((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)) |
48 | 45 | fveq1d 5519 |
. . . . . . 7
⊢ (𝜑 →
((invr‘𝑅)‘𝑌) =
((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌)) |
49 | 47, 48 | oveq12d 5896 |
. . . . . 6
⊢ (𝜑 →
(((invr‘𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr‘𝑅)‘𝑌)) =
(((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌))) |
50 | 44, 46, 49 | 3eqtr4d 2220 |
. . . . 5
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr‘𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr‘𝑅)‘𝑌))) |
51 | | basfn 12523 |
. . . . . . . . . . . 12
⊢ Base Fn
V |
52 | 10 | elexd 2752 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ V) |
53 | | funfvex 5534 |
. . . . . . . . . . . . 13
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
54 | 53 | funfni 5318 |
. . . . . . . . . . . 12
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
55 | 51, 52, 54 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
56 | 1, 55 | eqeltrid 2264 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ V) |
57 | 56, 18 | ssexd 4145 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ V) |
58 | | ressex 12528 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑈 ∈ V) → (𝑅 ↾s 𝑈) ∈ V) |
59 | | eqid 2177 |
. . . . . . . . . . 11
⊢
(mulGrp‘(𝑅
↾s 𝑈)) =
(mulGrp‘(𝑅
↾s 𝑈)) |
60 | | eqid 2177 |
. . . . . . . . . . 11
⊢
(.r‘(𝑅 ↾s 𝑈)) = (.r‘(𝑅 ↾s 𝑈)) |
61 | 59, 60 | mgpplusgg 13140 |
. . . . . . . . . 10
⊢ ((𝑅 ↾s 𝑈) ∈ V →
(.r‘(𝑅
↾s 𝑈)) =
(+g‘(mulGrp‘(𝑅 ↾s 𝑈)))) |
62 | 58, 61 | syl 14 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑈 ∈ V) →
(.r‘(𝑅
↾s 𝑈)) =
(+g‘(mulGrp‘(𝑅 ↾s 𝑈)))) |
63 | 10, 57, 62 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 →
(.r‘(𝑅
↾s 𝑈)) =
(+g‘(mulGrp‘(𝑅 ↾s 𝑈)))) |
64 | | eqid 2177 |
. . . . . . . . . 10
⊢ (𝑅 ↾s 𝑈) = (𝑅 ↾s 𝑈) |
65 | 64, 3 | ressmulrg 12606 |
. . . . . . . . 9
⊢ ((𝑈 ∈ V ∧ 𝑅 ∈ CRing) → · =
(.r‘(𝑅
↾s 𝑈))) |
66 | 57, 10, 65 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → · =
(.r‘(𝑅
↾s 𝑈))) |
67 | | eqid 2177 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
68 | 64, 67 | mgpress 13147 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) →
((mulGrp‘𝑅)
↾s 𝑈) =
(mulGrp‘(𝑅
↾s 𝑈))) |
69 | 11, 57, 68 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅 ↾s 𝑈))) |
70 | 69 | fveq2d 5521 |
. . . . . . . 8
⊢ (𝜑 →
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) =
(+g‘(mulGrp‘(𝑅 ↾s 𝑈)))) |
71 | 63, 66, 70 | 3eqtr4d 2220 |
. . . . . . 7
⊢ (𝜑 → · =
(+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
72 | 71 | oveqd 5895 |
. . . . . 6
⊢ (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) |
73 | 72 | fveq2d 5521 |
. . . . 5
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌 · 𝑊)) = ((invr‘𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))) |
74 | 71 | oveqd 5895 |
. . . . 5
⊢ (𝜑 →
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)) = (((invr‘𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr‘𝑅)‘𝑌))) |
75 | 50, 73, 74 | 3eqtr4d 2220 |
. . . 4
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌 · 𝑊)) = (((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌))) |
76 | 75 | oveq2d 5894 |
. . 3
⊢ (𝜑 → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
77 | 1, 3 | ringcl 13202 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
78 | 11, 12, 23, 77 | syl3anc 1238 |
. . . 4
⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
79 | 5, 3 | unitmulcl 13288 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈) → (𝑌 · 𝑊) ∈ 𝑈) |
80 | 11, 13, 24, 79 | syl3anc 1238 |
. . . 4
⊢ (𝜑 → (𝑌 · 𝑊) ∈ 𝑈) |
81 | 2, 4, 6, 7, 9, 11,
78, 80 | dvrvald 13309 |
. . 3
⊢ (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) ·
((invr‘𝑅)‘(𝑌 · 𝑊)))) |
82 | 5, 19 | unitinvcl 13298 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝑈) → ((invr‘𝑅)‘𝑊) ∈ 𝑈) |
83 | 11, 24, 82 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 →
((invr‘𝑅)‘𝑊) ∈ 𝑈) |
84 | 18, 83 | sseldd 3158 |
. . . . . . 7
⊢ (𝜑 →
((invr‘𝑅)‘𝑊) ∈ 𝐵) |
85 | 1, 3 | ringass 13205 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) = (𝑋 · (𝑍 ·
((invr‘𝑅)‘𝑊)))) |
86 | 11, 12, 23, 84, 85 | syl13anc 1240 |
. . . . . 6
⊢ (𝜑 → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) = (𝑋 · (𝑍 ·
((invr‘𝑅)‘𝑊)))) |
87 | 2, 4, 6, 7, 9, 11,
23, 24 | dvrvald 13309 |
. . . . . . 7
⊢ (𝜑 → (𝑍 / 𝑊) = (𝑍 ·
((invr‘𝑅)‘𝑊))) |
88 | 87 | oveq2d 5894 |
. . . . . 6
⊢ (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 ·
((invr‘𝑅)‘𝑊)))) |
89 | 86, 88 | eqtr4d 2213 |
. . . . 5
⊢ (𝜑 → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊))) |
90 | 89 | oveq1d 5893 |
. . . 4
⊢ (𝜑 → (((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) ·
((invr‘𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) ·
((invr‘𝑅)‘𝑌))) |
91 | 1, 3 | ringass 13205 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) ·
((invr‘𝑅)‘𝑌)) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
92 | 11, 78, 84, 22, 91 | syl13anc 1240 |
. . . 4
⊢ (𝜑 → (((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) ·
((invr‘𝑅)‘𝑌)) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
93 | 1, 3 | ringass 13205 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) ·
((invr‘𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
94 | 11, 12, 26, 22, 93 | syl13anc 1240 |
. . . 4
⊢ (𝜑 → ((𝑋 · (𝑍 / 𝑊)) ·
((invr‘𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
95 | 90, 92, 94 | 3eqtr3rd 2219 |
. . 3
⊢ (𝜑 → (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
96 | 76, 81, 95 | 3eqtr4rd 2221 |
. 2
⊢ (𝜑 → (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) |
97 | 32, 96 | eqtrd 2210 |
1
⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) |