Step | Hyp | Ref
| Expression |
1 | | dvrdir.b |
. . . . . 6
β’ π΅ = (Baseβπ
) |
2 | 1 | a1i 9 |
. . . . 5
β’ (π β π΅ = (Baseβπ
)) |
3 | | rdivmuldivd.p |
. . . . . 6
β’ Β· =
(.rβπ
) |
4 | 3 | a1i 9 |
. . . . 5
β’ (π β Β· =
(.rβπ
)) |
5 | | dvrdir.u |
. . . . . 6
β’ π = (Unitβπ
) |
6 | 5 | a1i 9 |
. . . . 5
β’ (π β π = (Unitβπ
)) |
7 | | eqidd 2178 |
. . . . 5
β’ (π β
(invrβπ
) =
(invrβπ
)) |
8 | | dvrdir.t |
. . . . . 6
β’ / =
(/rβπ
) |
9 | 8 | a1i 9 |
. . . . 5
β’ (π β / =
(/rβπ
)) |
10 | | rdivmuldivd.r |
. . . . . 6
β’ (π β π
β CRing) |
11 | 10 | crngringd 13197 |
. . . . 5
β’ (π β π
β Ring) |
12 | | rdivmuldivd.a |
. . . . 5
β’ (π β π β π΅) |
13 | | rdivmuldivd.b |
. . . . 5
β’ (π β π β π) |
14 | 2, 4, 6, 7, 9, 11,
12, 13 | dvrvald 13308 |
. . . 4
β’ (π β (π / π) = (π Β·
((invrβπ
)βπ))) |
15 | 14 | oveq1d 5892 |
. . 3
β’ (π β ((π / π) Β· (π / π)) = ((π Β·
((invrβπ
)βπ)) Β· (π / π))) |
16 | | ringsrg 13229 |
. . . . . . 7
β’ (π
β Ring β π
β SRing) |
17 | 11, 16 | syl 14 |
. . . . . 6
β’ (π β π
β SRing) |
18 | 2, 6, 17 | unitssd 13283 |
. . . . 5
β’ (π β π β π΅) |
19 | | eqid 2177 |
. . . . . . 7
β’
(invrβπ
) = (invrβπ
) |
20 | 5, 19 | unitinvcl 13297 |
. . . . . 6
β’ ((π
β Ring β§ π β π) β ((invrβπ
)βπ) β π) |
21 | 11, 13, 20 | syl2anc 411 |
. . . . 5
β’ (π β
((invrβπ
)βπ) β π) |
22 | 18, 21 | sseldd 3158 |
. . . 4
β’ (π β
((invrβπ
)βπ) β π΅) |
23 | | rdivmuldivd.c |
. . . . 5
β’ (π β π β π΅) |
24 | | rdivmuldivd.d |
. . . . 5
β’ (π β π β π) |
25 | 1, 5, 8 | dvrcl 13309 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π) β (π / π) β π΅) |
26 | 11, 23, 24, 25 | syl3anc 1238 |
. . . 4
β’ (π β (π / π) β π΅) |
27 | 1, 3 | ringass 13204 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ ((invrβπ
)βπ) β π΅ β§ (π / π) β π΅)) β ((π Β·
((invrβπ
)βπ)) Β· (π / π)) = (π Β·
(((invrβπ
)βπ) Β· (π / π)))) |
28 | 11, 12, 22, 26, 27 | syl13anc 1240 |
. . 3
β’ (π β ((π Β·
((invrβπ
)βπ)) Β· (π / π)) = (π Β·
(((invrβπ
)βπ) Β· (π / π)))) |
29 | 1, 3 | crngcom 13202 |
. . . . 5
β’ ((π
β CRing β§
((invrβπ
)βπ) β π΅ β§ (π / π) β π΅) β (((invrβπ
)βπ) Β· (π / π)) = ((π / π) Β·
((invrβπ
)βπ))) |
30 | 10, 22, 26, 29 | syl3anc 1238 |
. . . 4
β’ (π β
(((invrβπ
)βπ) Β· (π / π)) = ((π / π) Β·
((invrβπ
)βπ))) |
31 | 30 | oveq2d 5893 |
. . 3
β’ (π β (π Β·
(((invrβπ
)βπ) Β· (π / π))) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
32 | 15, 28, 31 | 3eqtrd 2214 |
. 2
β’ (π β ((π / π) Β· (π / π)) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
33 | | eqid 2177 |
. . . . . . . . 9
β’
((mulGrpβπ
)
βΎs π) =
((mulGrpβπ
)
βΎs π) |
34 | 5, 33 | unitgrp 13290 |
. . . . . . . 8
β’ (π
β Ring β
((mulGrpβπ
)
βΎs π)
β Grp) |
35 | 11, 34 | syl 14 |
. . . . . . 7
β’ (π β ((mulGrpβπ
) βΎs π) β Grp) |
36 | | eqidd 2178 |
. . . . . . . . 9
β’ (π β ((mulGrpβπ
) βΎs π) = ((mulGrpβπ
) βΎs π)) |
37 | 6, 36, 17 | unitgrpbasd 13289 |
. . . . . . . 8
β’ (π β π = (Baseβ((mulGrpβπ
) βΎs π))) |
38 | 13, 37 | eleqtrd 2256 |
. . . . . . 7
β’ (π β π β (Baseβ((mulGrpβπ
) βΎs π))) |
39 | 24, 37 | eleqtrd 2256 |
. . . . . . 7
β’ (π β π β (Baseβ((mulGrpβπ
) βΎs π))) |
40 | | eqid 2177 |
. . . . . . . 8
β’
(Baseβ((mulGrpβπ
) βΎs π)) = (Baseβ((mulGrpβπ
) βΎs π)) |
41 | | eqid 2177 |
. . . . . . . 8
β’
(+gβ((mulGrpβπ
) βΎs π)) =
(+gβ((mulGrpβπ
) βΎs π)) |
42 | | eqid 2177 |
. . . . . . . 8
β’
(invgβ((mulGrpβπ
) βΎs π)) =
(invgβ((mulGrpβπ
) βΎs π)) |
43 | 40, 41, 42 | grpinvadd 12953 |
. . . . . . 7
β’
((((mulGrpβπ
)
βΎs π)
β Grp β§ π β
(Baseβ((mulGrpβπ
) βΎs π)) β§ π β (Baseβ((mulGrpβπ
) βΎs π))) β
((invgβ((mulGrpβπ
) βΎs π))β(π(+gβ((mulGrpβπ
) βΎs π))π)) =
(((invgβ((mulGrpβπ
) βΎs π))βπ)(+gβ((mulGrpβπ
) βΎs π))((invgβ((mulGrpβπ
) βΎs π))βπ))) |
44 | 35, 38, 39, 43 | syl3anc 1238 |
. . . . . 6
β’ (π β
((invgβ((mulGrpβπ
) βΎs π))β(π(+gβ((mulGrpβπ
) βΎs π))π)) =
(((invgβ((mulGrpβπ
) βΎs π))βπ)(+gβ((mulGrpβπ
) βΎs π))((invgβ((mulGrpβπ
) βΎs π))βπ))) |
45 | 6, 36, 7, 11 | invrfvald 13296 |
. . . . . . 7
β’ (π β
(invrβπ
) =
(invgβ((mulGrpβπ
) βΎs π))) |
46 | 45 | fveq1d 5519 |
. . . . . 6
β’ (π β
((invrβπ
)β(π(+gβ((mulGrpβπ
) βΎs π))π)) =
((invgβ((mulGrpβπ
) βΎs π))β(π(+gβ((mulGrpβπ
) βΎs π))π))) |
47 | 45 | fveq1d 5519 |
. . . . . . 7
β’ (π β
((invrβπ
)βπ) =
((invgβ((mulGrpβπ
) βΎs π))βπ)) |
48 | 45 | fveq1d 5519 |
. . . . . . 7
β’ (π β
((invrβπ
)βπ) =
((invgβ((mulGrpβπ
) βΎs π))βπ)) |
49 | 47, 48 | oveq12d 5895 |
. . . . . 6
β’ (π β
(((invrβπ
)βπ)(+gβ((mulGrpβπ
) βΎs π))((invrβπ
)βπ)) =
(((invgβ((mulGrpβπ
) βΎs π))βπ)(+gβ((mulGrpβπ
) βΎs π))((invgβ((mulGrpβπ
) βΎs π))βπ))) |
50 | 44, 46, 49 | 3eqtr4d 2220 |
. . . . 5
β’ (π β
((invrβπ
)β(π(+gβ((mulGrpβπ
) βΎs π))π)) = (((invrβπ
)βπ)(+gβ((mulGrpβπ
) βΎs π))((invrβπ
)βπ))) |
51 | | basfn 12522 |
. . . . . . . . . . . 12
β’ Base Fn
V |
52 | 10 | elexd 2752 |
. . . . . . . . . . . 12
β’ (π β π
β V) |
53 | | funfvex 5534 |
. . . . . . . . . . . . 13
β’ ((Fun
Base β§ π
β dom
Base) β (Baseβπ
)
β V) |
54 | 53 | funfni 5318 |
. . . . . . . . . . . 12
β’ ((Base Fn
V β§ π
β V) β
(Baseβπ
) β
V) |
55 | 51, 52, 54 | sylancr 414 |
. . . . . . . . . . 11
β’ (π β (Baseβπ
) β V) |
56 | 1, 55 | eqeltrid 2264 |
. . . . . . . . . 10
β’ (π β π΅ β V) |
57 | 56, 18 | ssexd 4145 |
. . . . . . . . 9
β’ (π β π β V) |
58 | | ressex 12527 |
. . . . . . . . . 10
β’ ((π
β CRing β§ π β V) β (π
βΎs π) β V) |
59 | | eqid 2177 |
. . . . . . . . . . 11
β’
(mulGrpβ(π
βΎs π)) =
(mulGrpβ(π
βΎs π)) |
60 | | eqid 2177 |
. . . . . . . . . . 11
β’
(.rβ(π
βΎs π)) = (.rβ(π
βΎs π)) |
61 | 59, 60 | mgpplusgg 13139 |
. . . . . . . . . 10
β’ ((π
βΎs π) β V β
(.rβ(π
βΎs π)) =
(+gβ(mulGrpβ(π
βΎs π)))) |
62 | 58, 61 | syl 14 |
. . . . . . . . 9
β’ ((π
β CRing β§ π β V) β
(.rβ(π
βΎs π)) =
(+gβ(mulGrpβ(π
βΎs π)))) |
63 | 10, 57, 62 | syl2anc 411 |
. . . . . . . 8
β’ (π β
(.rβ(π
βΎs π)) =
(+gβ(mulGrpβ(π
βΎs π)))) |
64 | | eqid 2177 |
. . . . . . . . . 10
β’ (π
βΎs π) = (π
βΎs π) |
65 | 64, 3 | ressmulrg 12605 |
. . . . . . . . 9
β’ ((π β V β§ π
β CRing) β Β· =
(.rβ(π
βΎs π))) |
66 | 57, 10, 65 | syl2anc 411 |
. . . . . . . 8
β’ (π β Β· =
(.rβ(π
βΎs π))) |
67 | | eqid 2177 |
. . . . . . . . . . 11
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
68 | 64, 67 | mgpress 13146 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β V) β
((mulGrpβπ
)
βΎs π) =
(mulGrpβ(π
βΎs π))) |
69 | 11, 57, 68 | syl2anc 411 |
. . . . . . . . 9
β’ (π β ((mulGrpβπ
) βΎs π) = (mulGrpβ(π
βΎs π))) |
70 | 69 | fveq2d 5521 |
. . . . . . . 8
β’ (π β
(+gβ((mulGrpβπ
) βΎs π)) =
(+gβ(mulGrpβ(π
βΎs π)))) |
71 | 63, 66, 70 | 3eqtr4d 2220 |
. . . . . . 7
β’ (π β Β· =
(+gβ((mulGrpβπ
) βΎs π))) |
72 | 71 | oveqd 5894 |
. . . . . 6
β’ (π β (π Β· π) = (π(+gβ((mulGrpβπ
) βΎs π))π)) |
73 | 72 | fveq2d 5521 |
. . . . 5
β’ (π β
((invrβπ
)β(π Β· π)) = ((invrβπ
)β(π(+gβ((mulGrpβπ
) βΎs π))π))) |
74 | 71 | oveqd 5894 |
. . . . 5
β’ (π β
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)) = (((invrβπ
)βπ)(+gβ((mulGrpβπ
) βΎs π))((invrβπ
)βπ))) |
75 | 50, 73, 74 | 3eqtr4d 2220 |
. . . 4
β’ (π β
((invrβπ
)β(π Β· π)) = (((invrβπ
)βπ) Β·
((invrβπ
)βπ))) |
76 | 75 | oveq2d 5893 |
. . 3
β’ (π β ((π Β· π) Β·
((invrβπ
)β(π Β· π))) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
77 | 1, 3 | ringcl 13201 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
78 | 11, 12, 23, 77 | syl3anc 1238 |
. . . 4
β’ (π β (π Β· π) β π΅) |
79 | 5, 3 | unitmulcl 13287 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β (π Β· π) β π) |
80 | 11, 13, 24, 79 | syl3anc 1238 |
. . . 4
β’ (π β (π Β· π) β π) |
81 | 2, 4, 6, 7, 9, 11,
78, 80 | dvrvald 13308 |
. . 3
β’ (π β ((π Β· π) / (π Β· π)) = ((π Β· π) Β·
((invrβπ
)β(π Β· π)))) |
82 | 5, 19 | unitinvcl 13297 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β π) β ((invrβπ
)βπ) β π) |
83 | 11, 24, 82 | syl2anc 411 |
. . . . . . . 8
β’ (π β
((invrβπ
)βπ) β π) |
84 | 18, 83 | sseldd 3158 |
. . . . . . 7
β’ (π β
((invrβπ
)βπ) β π΅) |
85 | 1, 3 | ringass 13204 |
. . . . . . 7
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ ((invrβπ
)βπ) β π΅)) β ((π Β· π) Β·
((invrβπ
)βπ)) = (π Β· (π Β·
((invrβπ
)βπ)))) |
86 | 11, 12, 23, 84, 85 | syl13anc 1240 |
. . . . . 6
β’ (π β ((π Β· π) Β·
((invrβπ
)βπ)) = (π Β· (π Β·
((invrβπ
)βπ)))) |
87 | 2, 4, 6, 7, 9, 11,
23, 24 | dvrvald 13308 |
. . . . . . 7
β’ (π β (π / π) = (π Β·
((invrβπ
)βπ))) |
88 | 87 | oveq2d 5893 |
. . . . . 6
β’ (π β (π Β· (π / π)) = (π Β· (π Β·
((invrβπ
)βπ)))) |
89 | 86, 88 | eqtr4d 2213 |
. . . . 5
β’ (π β ((π Β· π) Β·
((invrβπ
)βπ)) = (π Β· (π / π))) |
90 | 89 | oveq1d 5892 |
. . . 4
β’ (π β (((π Β· π) Β·
((invrβπ
)βπ)) Β·
((invrβπ
)βπ)) = ((π Β· (π / π)) Β·
((invrβπ
)βπ))) |
91 | 1, 3 | ringass 13204 |
. . . . 5
β’ ((π
β Ring β§ ((π Β· π) β π΅ β§ ((invrβπ
)βπ) β π΅ β§ ((invrβπ
)βπ) β π΅)) β (((π Β· π) Β·
((invrβπ
)βπ)) Β·
((invrβπ
)βπ)) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
92 | 11, 78, 84, 22, 91 | syl13anc 1240 |
. . . 4
β’ (π β (((π Β· π) Β·
((invrβπ
)βπ)) Β·
((invrβπ
)βπ)) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
93 | 1, 3 | ringass 13204 |
. . . . 5
β’ ((π
β Ring β§ (π β π΅ β§ (π / π) β π΅ β§ ((invrβπ
)βπ) β π΅)) β ((π Β· (π / π)) Β·
((invrβπ
)βπ)) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
94 | 11, 12, 26, 22, 93 | syl13anc 1240 |
. . . 4
β’ (π β ((π Β· (π / π)) Β·
((invrβπ
)βπ)) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
95 | 90, 92, 94 | 3eqtr3rd 2219 |
. . 3
β’ (π β (π Β· ((π / π) Β·
((invrβπ
)βπ))) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
96 | 76, 81, 95 | 3eqtr4rd 2221 |
. 2
β’ (π β (π Β· ((π / π) Β·
((invrβπ
)βπ))) = ((π Β· π) / (π Β· π))) |
97 | 32, 96 | eqtrd 2210 |
1
β’ (π β ((π / π) Β· (π / π)) = ((π Β· π) / (π Β· π))) |