ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdivmuldivd GIF version

Theorem rdivmuldivd 13976
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
rdivmuldivd.p · = (.r𝑅)
rdivmuldivd.r (𝜑𝑅 ∈ CRing)
rdivmuldivd.a (𝜑𝑋𝐵)
rdivmuldivd.b (𝜑𝑌𝑈)
rdivmuldivd.c (𝜑𝑍𝐵)
rdivmuldivd.d (𝜑𝑊𝑈)
Assertion
Ref Expression
rdivmuldivd (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 dvrdir.b . . . . . 6 𝐵 = (Base‘𝑅)
21a1i 9 . . . . 5 (𝜑𝐵 = (Base‘𝑅))
3 rdivmuldivd.p . . . . . 6 · = (.r𝑅)
43a1i 9 . . . . 5 (𝜑· = (.r𝑅))
5 dvrdir.u . . . . . 6 𝑈 = (Unit‘𝑅)
65a1i 9 . . . . 5 (𝜑𝑈 = (Unit‘𝑅))
7 eqidd 2207 . . . . 5 (𝜑 → (invr𝑅) = (invr𝑅))
8 dvrdir.t . . . . . 6 / = (/r𝑅)
98a1i 9 . . . . 5 (𝜑/ = (/r𝑅))
10 rdivmuldivd.r . . . . . 6 (𝜑𝑅 ∈ CRing)
1110crngringd 13841 . . . . 5 (𝜑𝑅 ∈ Ring)
12 rdivmuldivd.a . . . . 5 (𝜑𝑋𝐵)
13 rdivmuldivd.b . . . . 5 (𝜑𝑌𝑈)
142, 4, 6, 7, 9, 11, 12, 13dvrvald 13966 . . . 4 (𝜑 → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
1514oveq1d 5971 . . 3 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
16 ringsrg 13879 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1711, 16syl 14 . . . . . 6 (𝜑𝑅 ∈ SRing)
182, 6, 17unitssd 13941 . . . . 5 (𝜑𝑈𝐵)
19 eqid 2206 . . . . . . 7 (invr𝑅) = (invr𝑅)
205, 19unitinvcl 13955 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
2111, 13, 20syl2anc 411 . . . . 5 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝑈)
2218, 21sseldd 3198 . . . 4 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝐵)
23 rdivmuldivd.c . . . . 5 (𝜑𝑍𝐵)
24 rdivmuldivd.d . . . . 5 (𝜑𝑊𝑈)
251, 5, 8dvrcl 13967 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) ∈ 𝐵)
2611, 23, 24, 25syl3anc 1250 . . . 4 (𝜑 → (𝑍 / 𝑊) ∈ 𝐵)
271, 3ringass 13848 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
2811, 12, 22, 26, 27syl13anc 1252 . . 3 (𝜑 → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
291, 3crngcom 13846 . . . . 5 ((𝑅 ∈ CRing ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
3010, 22, 26, 29syl3anc 1250 . . . 4 (𝜑 → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
3130oveq2d 5972 . . 3 (𝜑 → (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
3215, 28, 313eqtrd 2243 . 2 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
33 eqid 2206 . . . . . . . . 9 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
345, 33unitgrp 13948 . . . . . . . 8 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
3511, 34syl 14 . . . . . . 7 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
36 eqidd 2207 . . . . . . . . 9 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈))
376, 36, 17unitgrpbasd 13947 . . . . . . . 8 (𝜑𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
3813, 37eleqtrd 2285 . . . . . . 7 (𝜑𝑌 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
3924, 37eleqtrd 2285 . . . . . . 7 (𝜑𝑊 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
40 eqid 2206 . . . . . . . 8 (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
41 eqid 2206 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
42 eqid 2206 . . . . . . . 8 (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
4340, 41, 42grpinvadd 13480 . . . . . . 7 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)) ∧ 𝑊 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌)))
4435, 38, 39, 43syl3anc 1250 . . . . . 6 (𝜑 → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌)))
456, 36, 7, 11invrfvald 13954 . . . . . . 7 (𝜑 → (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)))
4645fveq1d 5590 . . . . . 6 (𝜑 → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)))
4745fveq1d 5590 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑊) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊))
4845fveq1d 5590 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑌) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌))
4947, 48oveq12d 5974 . . . . . 6 (𝜑 → (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)) = (((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑌)))
5044, 46, 493eqtr4d 2249 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
51 basfn 12960 . . . . . . . . . . . 12 Base Fn V
5210elexd 2787 . . . . . . . . . . . 12 (𝜑𝑅 ∈ V)
53 funfvex 5605 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
5453funfni 5384 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
5551, 52, 54sylancr 414 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) ∈ V)
561, 55eqeltrid 2293 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
5756, 18ssexd 4191 . . . . . . . . 9 (𝜑𝑈 ∈ V)
58 ressex 12967 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑈 ∈ V) → (𝑅s 𝑈) ∈ V)
59 eqid 2206 . . . . . . . . . . 11 (mulGrp‘(𝑅s 𝑈)) = (mulGrp‘(𝑅s 𝑈))
60 eqid 2206 . . . . . . . . . . 11 (.r‘(𝑅s 𝑈)) = (.r‘(𝑅s 𝑈))
6159, 60mgpplusgg 13756 . . . . . . . . . 10 ((𝑅s 𝑈) ∈ V → (.r‘(𝑅s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
6258, 61syl 14 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑈 ∈ V) → (.r‘(𝑅s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
6310, 57, 62syl2anc 411 . . . . . . . 8 (𝜑 → (.r‘(𝑅s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
64 eqid 2206 . . . . . . . . . 10 (𝑅s 𝑈) = (𝑅s 𝑈)
6564, 3ressmulrg 13047 . . . . . . . . 9 ((𝑈 ∈ V ∧ 𝑅 ∈ CRing) → · = (.r‘(𝑅s 𝑈)))
6657, 10, 65syl2anc 411 . . . . . . . 8 (𝜑· = (.r‘(𝑅s 𝑈)))
67 eqid 2206 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
6864, 67mgpress 13763 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
6911, 57, 68syl2anc 411 . . . . . . . . 9 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
7069fveq2d 5592 . . . . . . . 8 (𝜑 → (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
7163, 66, 703eqtr4d 2249 . . . . . . 7 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
7271oveqd 5973 . . . . . 6 (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))
7372fveq2d 5592 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)))
7471oveqd 5973 . . . . 5 (𝜑 → (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
7550, 73, 743eqtr4d 2249 . . . 4 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)))
7675oveq2d 5972 . . 3 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
771, 3ringcl 13845 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
7811, 12, 23, 77syl3anc 1250 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
795, 3unitmulcl 13945 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑊𝑈) → (𝑌 · 𝑊) ∈ 𝑈)
8011, 13, 24, 79syl3anc 1250 . . . 4 (𝜑 → (𝑌 · 𝑊) ∈ 𝑈)
812, 4, 6, 7, 9, 11, 78, 80dvrvald 13966 . . 3 (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
825, 19unitinvcl 13955 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑊𝑈) → ((invr𝑅)‘𝑊) ∈ 𝑈)
8311, 24, 82syl2anc 411 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝑈)
8418, 83sseldd 3198 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝐵)
851, 3ringass 13848 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
8611, 12, 23, 84, 85syl13anc 1252 . . . . . 6 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
872, 4, 6, 7, 9, 11, 23, 24dvrvald 13966 . . . . . . 7 (𝜑 → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
8887oveq2d 5972 . . . . . 6 (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
8986, 88eqtr4d 2242 . . . . 5 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊)))
9089oveq1d 5971 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)))
911, 3ringass 13848 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
9211, 78, 84, 22, 91syl13anc 1252 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
931, 3ringass 13848 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
9411, 12, 26, 22, 93syl13anc 1252 . . . 4 (𝜑 → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
9590, 92, 943eqtr3rd 2248 . . 3 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
9676, 81, 953eqtr4rd 2250 . 2 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
9732, 96eqtrd 2239 1 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773   Fn wfn 5274  cfv 5279  (class class class)co 5956  Basecbs 12902  s cress 12903  +gcplusg 12979  .rcmulr 12980  Grpcgrp 13402  invgcminusg 13403  mulGrpcmgp 13752  SRingcsrg 13795  Ringcrg 13828  CRingccrg 13829  Unitcui 13919  invrcinvr 13952  /rcdvr 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-tpos 6343  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-iress 12910  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-cmn 13692  df-abl 13693  df-mgp 13753  df-ur 13792  df-srg 13796  df-ring 13830  df-cring 13831  df-oppr 13900  df-dvdsr 13921  df-unit 13922  df-invr 13953  df-dvr 13964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator