ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngring GIF version

Theorem crngring 13564
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
crngring (𝑅 ∈ CRing → 𝑅 ∈ Ring)

Proof of Theorem crngring
StepHypRef Expression
1 eqid 2196 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21iscrng 13559 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
32simplbi 274 1 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cfv 5258  CMndccmn 13414  mulGrpcmgp 13476  Ringcrg 13552  CRingccrg 13553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-cring 13555
This theorem is referenced by:  crngringd  13565  crngunit  13667  dvdsunit  13668  unitmulclb  13670  unitabl  13673  rmodislmod  13907  quscrng  14089  cnring  14126  zringring  14149  zring0  14156  znzrh2  14202  zndvds0  14206  znf1o  14207  znidom  14213  znunit  14215
  Copyright terms: Public domain W3C validator