![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > crngring | GIF version |
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
crngring | ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | iscrng 13499 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
3 | 2 | simplbi 274 | 1 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5254 CMndccmn 13354 mulGrpcmgp 13416 Ringcrg 13492 CRingccrg 13493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-cring 13495 |
This theorem is referenced by: crngringd 13505 crngunit 13607 dvdsunit 13608 unitmulclb 13610 unitabl 13613 rmodislmod 13847 quscrng 14029 cnring 14058 zringring 14081 zring0 14088 znzrh2 14134 zndvds0 14138 znf1o 14139 znidom 14145 znunit 14147 |
Copyright terms: Public domain | W3C validator |