ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngring GIF version

Theorem crngring 13845
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
crngring (𝑅 ∈ CRing → 𝑅 ∈ Ring)

Proof of Theorem crngring
StepHypRef Expression
1 eqid 2206 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21iscrng 13840 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
32simplbi 274 1 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cfv 5280  CMndccmn 13695  mulGrpcmgp 13757  Ringcrg 13833  CRingccrg 13834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-cring 13836
This theorem is referenced by:  crngringd  13846  crngunit  13948  dvdsunit  13949  unitmulclb  13951  unitabl  13954  rmodislmod  14188  quscrng  14370  cnring  14407  zringring  14430  zring0  14437  znzrh2  14483  zndvds0  14487  znf1o  14488  znidom  14494  znunit  14496
  Copyright terms: Public domain W3C validator