![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > crngring | GIF version |
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
crngring | ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | iscrng 13191 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
3 | 2 | simplbi 274 | 1 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ‘cfv 5218 CMndccmn 13093 mulGrpcmgp 13135 Ringcrg 13184 CRingccrg 13185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-cring 13187 |
This theorem is referenced by: crngringd 13197 crngunit 13285 dvdsunit 13286 unitmulclb 13288 unitabl 13291 rmodislmod 13446 cnring 13549 zringring 13568 zring0 13575 |
Copyright terms: Public domain | W3C validator |