ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpos GIF version

Theorem ovmpos 5992
Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
ovmpos.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpos ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpos
StepHypRef Expression
1 elex 2748 . . 3 (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V)
2 nfcv 2319 . . . . 5 𝑥𝐴
3 nfcv 2319 . . . . 5 𝑦𝐴
4 nfcv 2319 . . . . 5 𝑦𝐵
5 nfcsb1v 3090 . . . . . . 7 𝑥𝐴 / 𝑥𝑅
65nfel1 2330 . . . . . 6 𝑥𝐴 / 𝑥𝑅 ∈ V
7 ovmpos.3 . . . . . . . . 9 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpo1 5936 . . . . . . . . 9 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2316 . . . . . . . 8 𝑥𝐹
10 nfcv 2319 . . . . . . . 8 𝑥𝑦
112, 9, 10nfov 5899 . . . . . . 7 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2327 . . . . . 6 𝑥(𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅
136, 12nfim 1572 . . . . 5 𝑥(𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)
14 nfcsb1v 3090 . . . . . . 7 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅
1514nfel1 2330 . . . . . 6 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V
16 nfmpo2 5937 . . . . . . . . 9 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2316 . . . . . . . 8 𝑦𝐹
183, 17, 4nfov 5899 . . . . . . 7 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2327 . . . . . 6 𝑦(𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅
2015, 19nfim 1572 . . . . 5 𝑦(𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
21 csbeq1a 3066 . . . . . . 7 (𝑥 = 𝐴𝑅 = 𝐴 / 𝑥𝑅)
2221eleq1d 2246 . . . . . 6 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐴 / 𝑥𝑅 ∈ V))
23 oveq1 5876 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2192 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅))
2522, 24imbi12d 234 . . . . 5 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)))
26 csbeq1a 3066 . . . . . . 7 (𝑦 = 𝐵𝐴 / 𝑥𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
2726eleq1d 2246 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑥𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
28 oveq2 5877 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2192 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3027, 29imbi12d 234 . . . . 5 (𝑦 = 𝐵 → ((𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅) ↔ (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)))
317ovmpt4g 5991 . . . . . 6 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1205 . . . . 5 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2804 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
34 csbcomg 3080 . . . . 5 ((𝐴𝐶𝐵𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
3534eleq1d 2246 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
3634eqeq2d 2189 . . . 4 ((𝐴𝐶𝐵𝐷) → ((𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3733, 35, 363imtr4d 203 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
381, 37syl5 32 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉 → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
39383impia 1200 1 ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  Vcvv 2737  csb 3057  (class class class)co 5869  cmpo 5871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator