ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpos GIF version

Theorem ovmpos 6127
Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
ovmpos.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpos ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpos
StepHypRef Expression
1 elex 2811 . . 3 (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V)
2 nfcv 2372 . . . . 5 𝑥𝐴
3 nfcv 2372 . . . . 5 𝑦𝐴
4 nfcv 2372 . . . . 5 𝑦𝐵
5 nfcsb1v 3157 . . . . . . 7 𝑥𝐴 / 𝑥𝑅
65nfel1 2383 . . . . . 6 𝑥𝐴 / 𝑥𝑅 ∈ V
7 ovmpos.3 . . . . . . . . 9 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpo1 6070 . . . . . . . . 9 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2369 . . . . . . . 8 𝑥𝐹
10 nfcv 2372 . . . . . . . 8 𝑥𝑦
112, 9, 10nfov 6030 . . . . . . 7 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2380 . . . . . 6 𝑥(𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅
136, 12nfim 1618 . . . . 5 𝑥(𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)
14 nfcsb1v 3157 . . . . . . 7 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅
1514nfel1 2383 . . . . . 6 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V
16 nfmpo2 6071 . . . . . . . . 9 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2369 . . . . . . . 8 𝑦𝐹
183, 17, 4nfov 6030 . . . . . . 7 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2380 . . . . . 6 𝑦(𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅
2015, 19nfim 1618 . . . . 5 𝑦(𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
21 csbeq1a 3133 . . . . . . 7 (𝑥 = 𝐴𝑅 = 𝐴 / 𝑥𝑅)
2221eleq1d 2298 . . . . . 6 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐴 / 𝑥𝑅 ∈ V))
23 oveq1 6007 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2244 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅))
2522, 24imbi12d 234 . . . . 5 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)))
26 csbeq1a 3133 . . . . . . 7 (𝑦 = 𝐵𝐴 / 𝑥𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
2726eleq1d 2298 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑥𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
28 oveq2 6008 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2244 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3027, 29imbi12d 234 . . . . 5 (𝑦 = 𝐵 → ((𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅) ↔ (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)))
317ovmpt4g 6126 . . . . . 6 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1229 . . . . 5 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 2868 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
34 csbcomg 3147 . . . . 5 ((𝐴𝐶𝐵𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
3534eleq1d 2298 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
3634eqeq2d 2241 . . . 4 ((𝐴𝐶𝐵𝐷) → ((𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3733, 35, 363imtr4d 203 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
381, 37syl5 32 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉 → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
39383impia 1224 1 ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  csb 3124  (class class class)co 6000  cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator