| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | GIF version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8346 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
| 2 | negeu 8345 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
| 3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
| 4 | riotacl 5976 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
| 6 | 1, 5 | eqeltrd 2306 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃!wreu 2510 ℩crio 5959 (class class class)co 6007 ℂcc 8005 + caddc 8010 − cmin 8325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 |
| This theorem is referenced by: negcl 8354 subf 8356 pncan3 8362 npcan 8363 addsubass 8364 addsub 8365 addsub12 8367 addsubeq4 8369 npncan 8375 nppcan 8376 nnpcan 8377 nppcan3 8378 subcan2 8379 subsub2 8382 subsub4 8387 nnncan 8389 nnncan1 8390 nnncan2 8391 npncan3 8392 addsub4 8397 subadd4 8398 peano2cnm 8420 subcli 8430 subcld 8465 subeqrev 8530 subdi 8539 subdir 8540 mulsub2 8556 recextlem1 8806 recexap 8808 div2subap 8992 cju 9116 ofnegsub 9117 halfaddsubcl 9352 halfaddsub 9353 iccf1o 10208 ser3sub 10753 sqsubswap 10829 subsq 10876 subsq2 10877 bcn2 10994 pfxccatin12lem1 11268 pfxccatin12lem2 11271 shftval2 11345 2shfti 11350 sqabssub 11575 abssub 11620 abs3dif 11624 abs2dif 11625 abs2difabs 11627 climuni 11812 cjcn2 11835 recn2 11836 imcn2 11837 climsub 11847 fisum0diag2 11966 arisum2 12018 geosergap 12025 geolim 12030 geolim2 12031 georeclim 12032 geo2sum 12033 tanaddap 12258 addsin 12261 fzocongeq 12377 odd2np1 12392 phiprm 12753 pythagtriplem4 12799 pythagtriplem12 12806 pythagtriplem14 12808 fldivp1 12879 4sqlem19 12940 cnmet 15212 dveflem 15408 dvef 15409 efimpi 15501 ptolemy 15506 tangtx 15520 abssinper 15528 1sgm2ppw 15677 perfect1 15680 lgsquad2 15770 |
| Copyright terms: Public domain | W3C validator |