ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcl GIF version

Theorem subcl 7973
Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
subcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)

Proof of Theorem subcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subval 7966 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
2 negeu 7965 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
32ancoms 266 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
4 riotacl 5744 . . 3 (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
53, 4syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
61, 5eqeltrd 2216 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  ∃!wreu 2418  crio 5729  (class class class)co 5774  cc 7630   + caddc 7635  cmin 7945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7947
This theorem is referenced by:  negcl  7974  subf  7976  pncan3  7982  npcan  7983  addsubass  7984  addsub  7985  addsub12  7987  addsubeq4  7989  npncan  7995  nppcan  7996  nnpcan  7997  nppcan3  7998  subcan2  7999  subsub2  8002  subsub4  8007  nnncan  8009  nnncan1  8010  nnncan2  8011  npncan3  8012  addsub4  8017  subadd4  8018  peano2cnm  8040  subcli  8050  subcld  8085  subeqrev  8150  subdi  8159  subdir  8160  mulsub2  8176  recextlem1  8424  recexap  8426  div2subap  8608  cju  8731  halfaddsubcl  8965  halfaddsub  8966  iccf1o  9799  ser3sub  10291  sqsubswap  10365  subsq  10411  subsq2  10412  bcn2  10522  shftval2  10610  2shfti  10615  sqabssub  10840  abssub  10885  abs3dif  10889  abs2dif  10890  abs2difabs  10892  climuni  11074  cjcn2  11097  recn2  11098  imcn2  11099  climsub  11109  fisum0diag2  11228  arisum2  11280  geosergap  11287  geolim  11292  geolim2  11293  georeclim  11294  geo2sum  11295  tanaddap  11457  addsin  11460  fzocongeq  11567  odd2np1  11581  phiprm  11910  cnmet  12713  dveflem  12870  dvef  12871  efimpi  12922  ptolemy  12927  tangtx  12941  abssinper  12949
  Copyright terms: Public domain W3C validator