![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcl | GIF version |
Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 8213 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
2 | negeu 8212 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
4 | riotacl 5889 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
6 | 1, 5 | eqeltrd 2270 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃!wreu 2474 ℩crio 5873 (class class class)co 5919 ℂcc 7872 + caddc 7877 − cmin 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 |
This theorem is referenced by: negcl 8221 subf 8223 pncan3 8229 npcan 8230 addsubass 8231 addsub 8232 addsub12 8234 addsubeq4 8236 npncan 8242 nppcan 8243 nnpcan 8244 nppcan3 8245 subcan2 8246 subsub2 8249 subsub4 8254 nnncan 8256 nnncan1 8257 nnncan2 8258 npncan3 8259 addsub4 8264 subadd4 8265 peano2cnm 8287 subcli 8297 subcld 8332 subeqrev 8397 subdi 8406 subdir 8407 mulsub2 8423 recextlem1 8672 recexap 8674 div2subap 8858 cju 8982 ofnegsub 8983 halfaddsubcl 9218 halfaddsub 9219 iccf1o 10073 ser3sub 10597 sqsubswap 10673 subsq 10720 subsq2 10721 bcn2 10838 shftval2 10973 2shfti 10978 sqabssub 11203 abssub 11248 abs3dif 11252 abs2dif 11253 abs2difabs 11255 climuni 11439 cjcn2 11462 recn2 11463 imcn2 11464 climsub 11474 fisum0diag2 11593 arisum2 11645 geosergap 11652 geolim 11657 geolim2 11658 georeclim 11659 geo2sum 11660 tanaddap 11885 addsin 11888 fzocongeq 12003 odd2np1 12017 phiprm 12364 pythagtriplem4 12409 pythagtriplem12 12416 pythagtriplem14 12418 fldivp1 12489 4sqlem19 12550 cnmet 14709 dveflem 14905 dvef 14906 efimpi 14995 ptolemy 15000 tangtx 15014 abssinper 15022 lgsquad2 15240 |
Copyright terms: Public domain | W3C validator |