![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcl | GIF version |
Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 8149 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
2 | negeu 8148 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
4 | riotacl 5845 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
6 | 1, 5 | eqeltrd 2254 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃!wreu 2457 ℩crio 5830 (class class class)co 5875 ℂcc 7809 + caddc 7814 − cmin 8128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-setind 4537 ax-resscn 7903 ax-1cn 7904 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-sub 8130 |
This theorem is referenced by: negcl 8157 subf 8159 pncan3 8165 npcan 8166 addsubass 8167 addsub 8168 addsub12 8170 addsubeq4 8172 npncan 8178 nppcan 8179 nnpcan 8180 nppcan3 8181 subcan2 8182 subsub2 8185 subsub4 8190 nnncan 8192 nnncan1 8193 nnncan2 8194 npncan3 8195 addsub4 8200 subadd4 8201 peano2cnm 8223 subcli 8233 subcld 8268 subeqrev 8333 subdi 8342 subdir 8343 mulsub2 8359 recextlem1 8608 recexap 8610 div2subap 8794 cju 8918 halfaddsubcl 9152 halfaddsub 9153 iccf1o 10004 ser3sub 10506 sqsubswap 10580 subsq 10627 subsq2 10628 bcn2 10744 shftval2 10835 2shfti 10840 sqabssub 11065 abssub 11110 abs3dif 11114 abs2dif 11115 abs2difabs 11117 climuni 11301 cjcn2 11324 recn2 11325 imcn2 11326 climsub 11336 fisum0diag2 11455 arisum2 11507 geosergap 11514 geolim 11519 geolim2 11520 georeclim 11521 geo2sum 11522 tanaddap 11747 addsin 11750 fzocongeq 11864 odd2np1 11878 phiprm 12223 pythagtriplem4 12268 pythagtriplem12 12275 pythagtriplem14 12277 fldivp1 12346 cnmet 14033 dveflem 14190 dvef 14191 efimpi 14243 ptolemy 14248 tangtx 14262 abssinper 14270 |
Copyright terms: Public domain | W3C validator |