| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | GIF version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8235 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
| 2 | negeu 8234 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
| 3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
| 4 | riotacl 5895 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
| 6 | 1, 5 | eqeltrd 2273 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃!wreu 2477 ℩crio 5879 (class class class)co 5925 ℂcc 7894 + caddc 7899 − cmin 8214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 |
| This theorem is referenced by: negcl 8243 subf 8245 pncan3 8251 npcan 8252 addsubass 8253 addsub 8254 addsub12 8256 addsubeq4 8258 npncan 8264 nppcan 8265 nnpcan 8266 nppcan3 8267 subcan2 8268 subsub2 8271 subsub4 8276 nnncan 8278 nnncan1 8279 nnncan2 8280 npncan3 8281 addsub4 8286 subadd4 8287 peano2cnm 8309 subcli 8319 subcld 8354 subeqrev 8419 subdi 8428 subdir 8429 mulsub2 8445 recextlem1 8695 recexap 8697 div2subap 8881 cju 9005 ofnegsub 9006 halfaddsubcl 9241 halfaddsub 9242 iccf1o 10096 ser3sub 10632 sqsubswap 10708 subsq 10755 subsq2 10756 bcn2 10873 shftval2 11008 2shfti 11013 sqabssub 11238 abssub 11283 abs3dif 11287 abs2dif 11288 abs2difabs 11290 climuni 11475 cjcn2 11498 recn2 11499 imcn2 11500 climsub 11510 fisum0diag2 11629 arisum2 11681 geosergap 11688 geolim 11693 geolim2 11694 georeclim 11695 geo2sum 11696 tanaddap 11921 addsin 11924 fzocongeq 12040 odd2np1 12055 phiprm 12416 pythagtriplem4 12462 pythagtriplem12 12469 pythagtriplem14 12471 fldivp1 12542 4sqlem19 12603 cnmet 14850 dveflem 15046 dvef 15047 efimpi 15139 ptolemy 15144 tangtx 15158 abssinper 15166 1sgm2ppw 15315 perfect1 15318 lgsquad2 15408 |
| Copyright terms: Public domain | W3C validator |