| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | GIF version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8326 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
| 2 | negeu 8325 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
| 3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
| 4 | riotacl 5963 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
| 6 | 1, 5 | eqeltrd 2306 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃!wreu 2510 ℩crio 5946 (class class class)co 5994 ℂcc 7985 + caddc 7990 − cmin 8305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-resscn 8079 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-sub 8307 |
| This theorem is referenced by: negcl 8334 subf 8336 pncan3 8342 npcan 8343 addsubass 8344 addsub 8345 addsub12 8347 addsubeq4 8349 npncan 8355 nppcan 8356 nnpcan 8357 nppcan3 8358 subcan2 8359 subsub2 8362 subsub4 8367 nnncan 8369 nnncan1 8370 nnncan2 8371 npncan3 8372 addsub4 8377 subadd4 8378 peano2cnm 8400 subcli 8410 subcld 8445 subeqrev 8510 subdi 8519 subdir 8520 mulsub2 8536 recextlem1 8786 recexap 8788 div2subap 8972 cju 9096 ofnegsub 9097 halfaddsubcl 9332 halfaddsub 9333 iccf1o 10188 ser3sub 10732 sqsubswap 10808 subsq 10855 subsq2 10856 bcn2 10973 pfxccatin12lem1 11246 pfxccatin12lem2 11249 shftval2 11323 2shfti 11328 sqabssub 11553 abssub 11598 abs3dif 11602 abs2dif 11603 abs2difabs 11605 climuni 11790 cjcn2 11813 recn2 11814 imcn2 11815 climsub 11825 fisum0diag2 11944 arisum2 11996 geosergap 12003 geolim 12008 geolim2 12009 georeclim 12010 geo2sum 12011 tanaddap 12236 addsin 12239 fzocongeq 12355 odd2np1 12370 phiprm 12731 pythagtriplem4 12777 pythagtriplem12 12784 pythagtriplem14 12786 fldivp1 12857 4sqlem19 12918 cnmet 15189 dveflem 15385 dvef 15386 efimpi 15478 ptolemy 15483 tangtx 15497 abssinper 15505 1sgm2ppw 15654 perfect1 15657 lgsquad2 15747 |
| Copyright terms: Public domain | W3C validator |