Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subcl | GIF version |
Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 8086 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
2 | negeu 8085 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
3 | 2 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
4 | riotacl 5811 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
6 | 1, 5 | eqeltrd 2242 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃!wreu 2445 ℩crio 5796 (class class class)co 5841 ℂcc 7747 + caddc 7752 − cmin 8065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 |
This theorem is referenced by: negcl 8094 subf 8096 pncan3 8102 npcan 8103 addsubass 8104 addsub 8105 addsub12 8107 addsubeq4 8109 npncan 8115 nppcan 8116 nnpcan 8117 nppcan3 8118 subcan2 8119 subsub2 8122 subsub4 8127 nnncan 8129 nnncan1 8130 nnncan2 8131 npncan3 8132 addsub4 8137 subadd4 8138 peano2cnm 8160 subcli 8170 subcld 8205 subeqrev 8270 subdi 8279 subdir 8280 mulsub2 8296 recextlem1 8544 recexap 8546 div2subap 8729 cju 8852 halfaddsubcl 9086 halfaddsub 9087 iccf1o 9936 ser3sub 10437 sqsubswap 10511 subsq 10557 subsq2 10558 bcn2 10673 shftval2 10764 2shfti 10769 sqabssub 10994 abssub 11039 abs3dif 11043 abs2dif 11044 abs2difabs 11046 climuni 11230 cjcn2 11253 recn2 11254 imcn2 11255 climsub 11265 fisum0diag2 11384 arisum2 11436 geosergap 11443 geolim 11448 geolim2 11449 georeclim 11450 geo2sum 11451 tanaddap 11676 addsin 11679 fzocongeq 11792 odd2np1 11806 phiprm 12151 pythagtriplem4 12196 pythagtriplem12 12203 pythagtriplem14 12205 fldivp1 12274 cnmet 13130 dveflem 13287 dvef 13288 efimpi 13340 ptolemy 13345 tangtx 13359 abssinper 13367 |
Copyright terms: Public domain | W3C validator |