| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcl | GIF version | ||
| Description: Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| subcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval 8277 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
| 2 | negeu 8276 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
| 3 | 2 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) |
| 4 | riotacl 5924 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) |
| 6 | 1, 5 | eqeltrd 2283 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃!wreu 2487 ℩crio 5908 (class class class)co 5954 ℂcc 7936 + caddc 7941 − cmin 8256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-setind 4590 ax-resscn 8030 ax-1cn 8031 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-sub 8258 |
| This theorem is referenced by: negcl 8285 subf 8287 pncan3 8293 npcan 8294 addsubass 8295 addsub 8296 addsub12 8298 addsubeq4 8300 npncan 8306 nppcan 8307 nnpcan 8308 nppcan3 8309 subcan2 8310 subsub2 8313 subsub4 8318 nnncan 8320 nnncan1 8321 nnncan2 8322 npncan3 8323 addsub4 8328 subadd4 8329 peano2cnm 8351 subcli 8361 subcld 8396 subeqrev 8461 subdi 8470 subdir 8471 mulsub2 8487 recextlem1 8737 recexap 8739 div2subap 8923 cju 9047 ofnegsub 9048 halfaddsubcl 9283 halfaddsub 9284 iccf1o 10139 ser3sub 10681 sqsubswap 10757 subsq 10804 subsq2 10805 bcn2 10922 shftval2 11187 2shfti 11192 sqabssub 11417 abssub 11462 abs3dif 11466 abs2dif 11467 abs2difabs 11469 climuni 11654 cjcn2 11677 recn2 11678 imcn2 11679 climsub 11689 fisum0diag2 11808 arisum2 11860 geosergap 11867 geolim 11872 geolim2 11873 georeclim 11874 geo2sum 11875 tanaddap 12100 addsin 12103 fzocongeq 12219 odd2np1 12234 phiprm 12595 pythagtriplem4 12641 pythagtriplem12 12648 pythagtriplem14 12650 fldivp1 12721 4sqlem19 12782 cnmet 15052 dveflem 15248 dvef 15249 efimpi 15341 ptolemy 15346 tangtx 15360 abssinper 15368 1sgm2ppw 15517 perfect1 15520 lgsquad2 15610 |
| Copyright terms: Public domain | W3C validator |