Proof of Theorem lcmcllem
Step | Hyp | Ref
| Expression |
1 | | lcmn0val 12204 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
2 | | 1zzd 9344 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 1 ∈
ℤ) |
3 | | nnuz 9628 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
4 | 3 | rabeqi 2753 |
. . 3
⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ (ℤ≥‘1)
∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} |
5 | | breq2 4033 |
. . . . 5
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
6 | | breq2 4033 |
. . . . 5
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
7 | 5, 6 | anbi12d 473 |
. . . 4
⊢ (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))) |
8 | | simpll 527 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℤ) |
9 | | simplr 528 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ) |
10 | 8, 9 | zmulcld 9445 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ) |
11 | 8 | zcnd 9440 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℂ) |
12 | 9 | zcnd 9440 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℂ) |
13 | | ioran 753 |
. . . . . . . . . . . 12
⊢ (¬
(𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
14 | 13 | biimpi 120 |
. . . . . . . . . . 11
⊢ (¬
(𝑀 = 0 ∨ 𝑁 = 0) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
15 | 14 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0)) |
16 | 15 | simpld 112 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑀 = 0) |
17 | 16 | neneqad 2443 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ≠ 0) |
18 | | 0zd 9329 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 0 ∈
ℤ) |
19 | | zapne 9391 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑀 # 0
↔ 𝑀 ≠
0)) |
20 | 8, 18, 19 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 # 0 ↔ 𝑀 ≠ 0)) |
21 | 17, 20 | mpbird 167 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 # 0) |
22 | 15 | simprd 114 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑁 = 0) |
23 | 22 | neneqad 2443 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ≠ 0) |
24 | | zapne 9391 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 # 0
↔ 𝑁 ≠
0)) |
25 | 9, 18, 24 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 # 0 ↔ 𝑁 ≠ 0)) |
26 | 23, 25 | mpbird 167 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 # 0) |
27 | 11, 12, 21, 26 | mulap0d 8677 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) # 0) |
28 | | zapne 9391 |
. . . . . . 7
⊢ (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0)) |
29 | 10, 18, 28 | syl2anc 411 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0)) |
30 | 27, 29 | mpbid 147 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ≠ 0) |
31 | | nnabscl 11244 |
. . . . 5
⊢ (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ) |
32 | 10, 30, 31 | syl2anc 411 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ) |
33 | | dvdsmul1 11956 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
34 | | zmulcl 9370 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
35 | | dvdsabsb 11953 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
36 | 34, 35 | syldan 282 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁)))) |
37 | 33, 36 | mpbid 147 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘(𝑀 · 𝑁))) |
38 | | dvdsmul2 11957 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
39 | | dvdsabsb 11953 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
40 | 34, 39 | sylan2 286 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
41 | 40 | anabss7 583 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
42 | 38, 41 | mpbid 147 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (abs‘(𝑀 · 𝑁))) |
43 | 37, 42 | jca 306 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
44 | 43 | adantr 276 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) |
45 | 7, 32, 44 | elrabd 2918 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
46 | | simplll 533 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑀 ∈ ℤ) |
47 | | elfzelz 10091 |
. . . . . 6
⊢ (𝑛 ∈ (1...(abs‘(𝑀 · 𝑁))) → 𝑛 ∈ ℤ) |
48 | 47 | adantl 277 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑛 ∈ ℤ) |
49 | | zdvdsdc 11955 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) →
DECID 𝑀
∥ 𝑛) |
50 | 46, 48, 49 | syl2anc 411 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑀 ∥ 𝑛) |
51 | | simpllr 534 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑁 ∈ ℤ) |
52 | | zdvdsdc 11955 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) →
DECID 𝑁
∥ 𝑛) |
53 | 51, 48, 52 | syl2anc 411 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑁 ∥ 𝑛) |
54 | 50, 53 | dcand 934 |
. . 3
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
55 | 2, 4, 45, 54 | infssuzcldc 12088 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
56 | 1, 55 | eqeltrd 2270 |
1
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |