Proof of Theorem fzowrddc
| Step | Hyp | Ref
| Expression |
| 1 | | 0z 9383 |
. . . . . 6
⊢ 0 ∈
ℤ |
| 2 | | simpl2 1004 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → 𝐹 ∈ ℤ) |
| 3 | | zdcle 9449 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ 𝐹
∈ ℤ) → DECID 0 ≤ 𝐹) |
| 4 | 1, 2, 3 | sylancr 414 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → DECID 0 ≤ 𝐹) |
| 5 | | simpl3 1005 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → 𝐿 ∈ ℤ) |
| 6 | | lencl 10998 |
. . . . . . . . 9
⊢ (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈
ℕ0) |
| 7 | 6 | nn0zd 9493 |
. . . . . . . 8
⊢ (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℤ) |
| 8 | 7 | 3ad2ant1 1021 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (♯‘𝑆) ∈
ℤ) |
| 9 | 8 | adantr 276 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → (♯‘𝑆) ∈ ℤ) |
| 10 | | zdcle 9449 |
. . . . . 6
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝑆) ∈
ℤ) → DECID 𝐿 ≤ (♯‘𝑆)) |
| 11 | 5, 9, 10 | syl2anc 411 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → DECID 𝐿 ≤ (♯‘𝑆)) |
| 12 | 4, 11 | dcand 935 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → DECID (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑆))) |
| 13 | | 0zd 9384 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → 0 ∈ ℤ) |
| 14 | | simpr 110 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → 𝐹 < 𝐿) |
| 15 | | ssfzo12bi 10354 |
. . . . . 6
⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈
ℤ ∧ (♯‘𝑆) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑆)))) |
| 16 | 2, 5, 13, 9, 14, 15 | syl221anc 1261 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑆)))) |
| 17 | 16 | dcbid 840 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → (DECID (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)) ↔ DECID
(0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑆)))) |
| 18 | 12, 17 | mpbird 167 |
. . 3
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → DECID (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆))) |
| 19 | | fzonlt0 10291 |
. . . . . . . 8
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬
𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅)) |
| 20 | 19 | 3adant1 1018 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅)) |
| 21 | 20 | biimpa 296 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ 𝐹 < 𝐿) → (𝐹..^𝐿) = ∅) |
| 22 | | 0ss 3499 |
. . . . . 6
⊢ ∅
⊆ (0..^(♯‘𝑆)) |
| 23 | 21, 22 | eqsstrdi 3245 |
. . . . 5
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ 𝐹 < 𝐿) → (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆))) |
| 24 | 23 | orcd 735 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)) ∨ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)))) |
| 25 | | df-dc 837 |
. . . 4
⊢
(DECID (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)) ↔ ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)) ∨ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)))) |
| 26 | 24, 25 | sylibr 134 |
. . 3
⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ 𝐹 < 𝐿) → DECID (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆))) |
| 27 | | zdclt 9450 |
. . . . 5
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
DECID 𝐹 <
𝐿) |
| 28 | 27 | 3adant1 1018 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID
𝐹 < 𝐿) |
| 29 | | exmiddc 838 |
. . . 4
⊢
(DECID 𝐹 < 𝐿 → (𝐹 < 𝐿 ∨ ¬ 𝐹 < 𝐿)) |
| 30 | 28, 29 | syl 14 |
. . 3
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ∨ ¬ 𝐹 < 𝐿)) |
| 31 | 18, 26, 30 | mpjaodan 800 |
. 2
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID
(𝐹..^𝐿) ⊆ (0..^(♯‘𝑆))) |
| 32 | | wrddm 11002 |
. . . . 5
⊢ (𝑆 ∈ Word 𝐴 → dom 𝑆 = (0..^(♯‘𝑆))) |
| 33 | 32 | 3ad2ant1 1021 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → dom 𝑆 = (0..^(♯‘𝑆))) |
| 34 | 33 | sseq2d 3223 |
. . 3
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) ⊆ dom 𝑆 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)))) |
| 35 | 34 | dcbid 840 |
. 2
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
(DECID (𝐹..^𝐿) ⊆ dom 𝑆 ↔ DECID (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆)))) |
| 36 | 31, 35 | mpbird 167 |
1
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID
(𝐹..^𝐿) ⊆ dom 𝑆) |