ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsinv1 GIF version

Theorem bitsinv1 12459
Description: There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 12455), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
bitsinv1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Distinct variable group:   𝑛,𝑁

Proof of Theorem bitsinv1
Dummy variables 𝑘 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6002 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
2 fzo0 10354 . . . . . . . . . . 11 (0..^0) = ∅
31, 2eqtrdi 2278 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
43ineq2d 3405 . . . . . . . . 9 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ ∅))
5 in0 3526 . . . . . . . . 9 ((bits‘𝑁) ∩ ∅) = ∅
64, 5eqtrdi 2278 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ∅)
76sumeq1d 11863 . . . . . . 7 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
8 sum0 11885 . . . . . . 7 Σ𝑛 ∈ ∅ (2↑𝑛) = 0
97, 8eqtrdi 2278 . . . . . 6 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = 0)
10 oveq2 6002 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
11 2cn 9169 . . . . . . . . 9 2 ∈ ℂ
12 exp0 10752 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1311, 12ax-mp 5 . . . . . . . 8 (2↑0) = 1
1410, 13eqtrdi 2278 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1514oveq2d 6010 . . . . . 6 (𝑥 = 0 → (𝑁 mod (2↑𝑥)) = (𝑁 mod 1))
169, 15eqeq12d 2244 . . . . 5 (𝑥 = 0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ 0 = (𝑁 mod 1)))
1716imbi2d 230 . . . 4 (𝑥 = 0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))))
18 oveq2 6002 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
1918ineq2d 3405 . . . . . . 7 (𝑥 = 𝑘 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑘)))
2019sumeq1d 11863 . . . . . 6 (𝑥 = 𝑘 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛))
21 oveq2 6002 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2221oveq2d 6010 . . . . . 6 (𝑥 = 𝑘 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑘)))
2320, 22eqeq12d 2244 . . . . 5 (𝑥 = 𝑘 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))))
2423imbi2d 230 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)))))
25 oveq2 6002 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
2625ineq2d 3405 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
2726sumeq1d 11863 . . . . . 6 (𝑥 = (𝑘 + 1) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛))
28 oveq2 6002 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
2928oveq2d 6010 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑(𝑘 + 1))))
3027, 29eqeq12d 2244 . . . . 5 (𝑥 = (𝑘 + 1) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
3130imbi2d 230 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
32 oveq2 6002 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3332ineq2d 3405 . . . . . . 7 (𝑥 = 𝑁 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑁)))
3433sumeq1d 11863 . . . . . 6 (𝑥 = 𝑁 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛))
35 oveq2 6002 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
3635oveq2d 6010 . . . . . 6 (𝑥 = 𝑁 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑁)))
3734, 36eqeq12d 2244 . . . . 5 (𝑥 = 𝑁 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
3837imbi2d 230 . . . 4 (𝑥 = 𝑁 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))))
39 nn0z 9454 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
40 zmod10 10549 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
4139, 40syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 mod 1) = 0)
4241eqcomd 2235 . . . 4 (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))
43 oveq1 6001 . . . . . . 7 𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
44 fzonel 10345 . . . . . . . . . . . . 13 ¬ 𝑘 ∈ (0..^𝑘)
4544a1i 9 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ¬ 𝑘 ∈ (0..^𝑘))
46 disjsn 3728 . . . . . . . . . . . 12 (((0..^𝑘) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (0..^𝑘))
4745, 46sylibr 134 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((0..^𝑘) ∩ {𝑘}) = ∅)
4847ineq2d 3405 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = ((bits‘𝑁) ∩ ∅))
49 inindi 3421 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘}))
5048, 49, 53eqtr3g 2285 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘})) = ∅)
51 simpr 110 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
52 nn0uz 9745 . . . . . . . . . . . . 13 0 = (ℤ‘0)
5351, 52eleqtrdi 2322 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
54 fzosplitsn 10426 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5553, 54syl 14 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5655ineq2d 3405 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})))
57 indi 3451 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘}))
5856, 57eqtrdi 2278 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘})))
59 0z 9445 . . . . . . . . . . 11 0 ∈ ℤ
60 nn0z 9454 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
6160peano2zd 9560 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
6261adantl 277 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
63 fzofig 10641 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (0..^(𝑘 + 1)) ∈ Fin)
6459, 62, 63sylancr 414 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0..^(𝑘 + 1)) ∈ Fin)
65 inss2 3425 . . . . . . . . . . 11 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))
6665a1i 9 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1)))
6739ad2antrr 488 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → 𝑁 ∈ ℤ)
68 elfzonn0 10374 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0..^(𝑘 + 1)) → 𝑗 ∈ ℕ0)
6968adantl 277 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → 𝑗 ∈ ℕ0)
70 bitsdc 12444 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℕ0) → DECID 𝑗 ∈ (bits‘𝑁))
7167, 69, 70syl2anc 411 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → DECID 𝑗 ∈ (bits‘𝑁))
7269nn0zd 9555 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → 𝑗 ∈ ℤ)
73 0zd 9446 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → 0 ∈ ℤ)
7462adantr 276 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
75 fzodcel 10337 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → DECID 𝑗 ∈ (0..^(𝑘 + 1)))
7672, 73, 74, 75syl3anc 1271 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → DECID 𝑗 ∈ (0..^(𝑘 + 1)))
7771, 76dcand 938 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → DECID (𝑗 ∈ (bits‘𝑁) ∧ 𝑗 ∈ (0..^(𝑘 + 1))))
78 elin 3387 . . . . . . . . . . . . 13 (𝑗 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ↔ (𝑗 ∈ (bits‘𝑁) ∧ 𝑗 ∈ (0..^(𝑘 + 1))))
7978dcbii 845 . . . . . . . . . . . 12 (DECID 𝑗 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ↔ DECID (𝑗 ∈ (bits‘𝑁) ∧ 𝑗 ∈ (0..^(𝑘 + 1))))
8077, 79sylibr 134 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0..^(𝑘 + 1))) → DECID 𝑗 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
8180ralrimiva 2603 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ∀𝑗 ∈ (0..^(𝑘 + 1))DECID 𝑗 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
82 ssfidc 7087 . . . . . . . . . 10 (((0..^(𝑘 + 1)) ∈ Fin ∧ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1)) ∧ ∀𝑗 ∈ (0..^(𝑘 + 1))DECID 𝑗 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
8364, 66, 81, 82syl3anc 1271 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
84 2nn 9260 . . . . . . . . . . . 12 2 ∈ ℕ
8584a1i 9 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 2 ∈ ℕ)
86 simpr 110 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
8786elin2d 3394 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (0..^(𝑘 + 1)))
88 elfzouz 10335 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(𝑘 + 1)) → 𝑛 ∈ (ℤ‘0))
8987, 88syl 14 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (ℤ‘0))
9089, 52eleqtrrdi 2323 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ℕ0)
9185, 90nnexpcld 10904 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℕ)
9291nncnd 9112 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℂ)
9350, 58, 83, 92fsumsplit 11904 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
94 bitsinv1lem 12458 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
9539, 94sylan 283 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
96 eqeq2 2239 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
97 eqeq2 2239 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0 ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
98 simpr 110 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ (bits‘𝑁))
9998snssd 3812 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → {𝑘} ⊆ (bits‘𝑁))
100 sseqin2 3423 . . . . . . . . . . . . . 14 ({𝑘} ⊆ (bits‘𝑁) ↔ ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
10199, 100sylib 122 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
102101sumeq1d 11863 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ {𝑘} (2↑𝑛))
103 simplr 528 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ ℕ0)
10484a1i 9 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 2 ∈ ℕ)
105104, 103nnexpcld 10904 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℕ)
106105nncnd 9112 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℂ)
107 oveq2 6002 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
108107sumsn 11908 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (2↑𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
109103, 106, 108syl2anc 411 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
110102, 109eqtrd 2262 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘))
111 simpr 110 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ¬ 𝑘 ∈ (bits‘𝑁))
112 disjsn 3728 . . . . . . . . . . . . . 14 (((bits‘𝑁) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (bits‘𝑁))
113111, 112sylibr 134 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = ∅)
114113sumeq1d 11863 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
115114, 8eqtrdi 2278 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0)
116 bitsdc 12444 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → DECID 𝑘 ∈ (bits‘𝑁))
11739, 116sylan 283 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → DECID 𝑘 ∈ (bits‘𝑁))
11896, 97, 110, 115, 117ifbothdadc 3636 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0))
119118oveq2d 6010 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
12095, 119eqtr4d 2265 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
12193, 120eqeq12d 2244 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))) ↔ (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛))))
12243, 121imbitrrid 156 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
123122expcom 116 . . . . 5 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
124123a2d 26 . . . 4 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))) → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
12517, 24, 31, 38, 42, 124nn0ind 9549 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
126125pm2.43i 49 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))
127 id 19 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
128127, 52eleqtrdi 2322 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
12984a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
130129, 127nnexpcld 10904 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
131130nnzd 9556 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
132 2z 9462 . . . . . . . 8 2 ∈ ℤ
133 uzid 9724 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
134132, 133ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
135 bernneq3 10871 . . . . . . 7 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
136134, 135mpan 424 . . . . . 6 (𝑁 ∈ ℕ0𝑁 < (2↑𝑁))
137 elfzo2 10334 . . . . . 6 (𝑁 ∈ (0..^(2↑𝑁)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑁) ∈ ℤ ∧ 𝑁 < (2↑𝑁)))
138128, 131, 136, 137syl3anbrc 1205 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(2↑𝑁)))
139 bitsfzo 12452 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
14039, 127, 139syl2anc 411 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
141138, 140mpbid 147 . . . 4 (𝑁 ∈ ℕ0 → (bits‘𝑁) ⊆ (0..^𝑁))
142 dfss2 3214 . . . 4 ((bits‘𝑁) ⊆ (0..^𝑁) ↔ ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
143141, 142sylib 122 . . 3 (𝑁 ∈ ℕ0 → ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
144143sumeq1d 11863 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛))
145 zq 9809 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
14639, 145syl 14 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℚ)
147 zexpcl 10763 . . . . 5 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
148132, 147mpan 424 . . . 4 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
149 zq 9809 . . . 4 ((2↑𝑁) ∈ ℤ → (2↑𝑁) ∈ ℚ)
150148, 149syl 14 . . 3 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℚ)
151 nn0ge0 9382 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
152 modqid 10558 . . 3 (((𝑁 ∈ ℚ ∧ (2↑𝑁) ∈ ℚ) ∧ (0 ≤ 𝑁𝑁 < (2↑𝑁))) → (𝑁 mod (2↑𝑁)) = 𝑁)
153146, 150, 151, 136, 152syl22anc 1272 . 2 (𝑁 ∈ ℕ0 → (𝑁 mod (2↑𝑁)) = 𝑁)
154126, 144, 1533eqtr3d 2270 1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  cun 3195  cin 3196  wss 3197  c0 3491  ifcif 3602  {csn 3666   class class class wbr 4082  cfv 5314  (class class class)co 5994  Fincfn 6877  cc 7985  0cc0 7987  1c1 7988   + caddc 7990   < clt 8169  cle 8170  cn 9098  2c2 9149  0cn0 9357  cz 9434  cuz 9710  cq 9802  ..^cfzo 10326   mod cmo 10531  cexp 10747  Σcsu 11850  bitscbits 12437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-dvds 12285  df-bits 12438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator