ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmval GIF version

Theorem lcmval 12593
Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 12483 and gcdval 12488. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem lcmval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcm 12591 . . 3 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
21a1i 9 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < ))))
3 eqeq1 2236 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0))
43orbi1d 796 . . . . 5 (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0)))
5 breq1 4086 . . . . . . . 8 (𝑥 = 𝑀 → (𝑥𝑛𝑀𝑛))
65anbi1d 465 . . . . . . 7 (𝑥 = 𝑀 → ((𝑥𝑛𝑦𝑛) ↔ (𝑀𝑛𝑦𝑛)))
76rabbidv 2788 . . . . . 6 (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)})
87infeq1d 7187 . . . . 5 (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < ))
94, 8ifbieq2d 3627 . . . 4 (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < )))
10 eqeq1 2236 . . . . . 6 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
1110orbi2d 795 . . . . 5 (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0)))
12 breq1 4086 . . . . . . . 8 (𝑦 = 𝑁 → (𝑦𝑛𝑁𝑛))
1312anbi2d 464 . . . . . . 7 (𝑦 = 𝑁 → ((𝑀𝑛𝑦𝑛) ↔ (𝑀𝑛𝑁𝑛)))
1413rabbidv 2788 . . . . . 6 (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
1514infeq1d 7187 . . . . 5 (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
1611, 15ifbieq2d 3627 . . . 4 (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
179, 16sylan9eq 2282 . . 3 ((𝑥 = 𝑀𝑦 = 𝑁) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
1817adantl 277 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 = 𝑀𝑦 = 𝑁)) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
19 simpl 109 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
20 simpr 110 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
21 c0ex 8148 . . . 4 0 ∈ V
2221a1i 9 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 0 ∈ V)
23 1zzd 9481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 1 ∈ ℤ)
24 nnuz 9766 . . . . . 6 ℕ = (ℤ‘1)
2524rabeqi 2792 . . . . 5 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} = {𝑛 ∈ (ℤ‘1) ∣ (𝑀𝑛𝑁𝑛)}
26 dvdsmul1 12332 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
2726adantr 276 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 · 𝑁))
28 simpll 527 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℤ)
29 simplr 528 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ)
3028, 29zmulcld 9583 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ)
31 dvdsabsb 12329 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
3228, 30, 31syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
3327, 32mpbid 147 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (abs‘(𝑀 · 𝑁)))
34 dvdsmul2 12333 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
3534adantr 276 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 · 𝑁))
36 dvdsabsb 12329 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3729, 30, 36syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3835, 37mpbid 147 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (abs‘(𝑀 · 𝑁)))
3928zcnd 9578 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℂ)
4029zcnd 9578 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℂ)
4139, 40absmuld 11713 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
42 simpr 110 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
43 ioran 757 . . . . . . . . . . . . 13 (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
4442, 43sylib 122 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
4544simpld 112 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑀 = 0)
4645neneqad 2479 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ≠ 0)
47 nnabscl 11619 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
4828, 46, 47syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘𝑀) ∈ ℕ)
4944simprd 114 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑁 = 0)
5049neneqad 2479 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ≠ 0)
51 nnabscl 11619 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
5229, 50, 51syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘𝑁) ∈ ℕ)
5348, 52nnmulcld 9167 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) · (abs‘𝑁)) ∈ ℕ)
5441, 53eqeltrd 2306 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
55 breq2 4087 . . . . . . . . 9 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀𝑛𝑀 ∥ (abs‘(𝑀 · 𝑁))))
56 breq2 4087 . . . . . . . . 9 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁𝑛𝑁 ∥ (abs‘(𝑀 · 𝑁))))
5755, 56anbi12d 473 . . . . . . . 8 (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀𝑛𝑁𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
5857elrab3 2960 . . . . . . 7 ((abs‘(𝑀 · 𝑁)) ∈ ℕ → ((abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
5954, 58syl 14 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
6033, 38, 59mpbir2and 950 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
61 elfzelz 10229 . . . . . . 7 (𝑛 ∈ (1...(abs‘(𝑀 · 𝑁))) → 𝑛 ∈ ℤ)
62 zdvdsdc 12331 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑀𝑛)
6328, 61, 62syl2an 289 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑀𝑛)
64 zdvdsdc 12331 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑁𝑛)
6529, 61, 64syl2an 289 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑁𝑛)
6663, 65dcand 938 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID (𝑀𝑛𝑁𝑛))
6723, 25, 60, 66infssuzcldc 10463 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
6867elexd 2813 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ V)
69 lcmmndc 12592 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
7022, 68, 69ifcldadc 3632 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) ∈ V)
712, 18, 19, 20, 70ovmpod 6138 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  {crab 2512  Vcvv 2799  ifcif 3602   class class class wbr 4083  cfv 5318  (class class class)co 6007  cmpo 6009  infcinf 7158  cr 8006  0cc0 8007  1c1 8008   · cmul 8012   < clt 8189  cn 9118  cz 9454  cuz 9730  ...cfz 10212  abscabs 11516  cdvds 12306   lcm clcm 12590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-lcm 12591
This theorem is referenced by:  lcmcom  12594  lcm0val  12595  lcmn0val  12596  lcmass  12615
  Copyright terms: Public domain W3C validator