ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmval GIF version

Theorem lcmval 12551
Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 12441 and gcdval 12446. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem lcmval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcm 12549 . . 3 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
21a1i 9 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < ))))
3 eqeq1 2216 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0))
43orbi1d 795 . . . . 5 (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0)))
5 breq1 4065 . . . . . . . 8 (𝑥 = 𝑀 → (𝑥𝑛𝑀𝑛))
65anbi1d 465 . . . . . . 7 (𝑥 = 𝑀 → ((𝑥𝑛𝑦𝑛) ↔ (𝑀𝑛𝑦𝑛)))
76rabbidv 2768 . . . . . 6 (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)})
87infeq1d 7147 . . . . 5 (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < ))
94, 8ifbieq2d 3607 . . . 4 (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < )))
10 eqeq1 2216 . . . . . 6 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
1110orbi2d 794 . . . . 5 (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0)))
12 breq1 4065 . . . . . . . 8 (𝑦 = 𝑁 → (𝑦𝑛𝑁𝑛))
1312anbi2d 464 . . . . . . 7 (𝑦 = 𝑁 → ((𝑀𝑛𝑦𝑛) ↔ (𝑀𝑛𝑁𝑛)))
1413rabbidv 2768 . . . . . 6 (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
1514infeq1d 7147 . . . . 5 (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
1611, 15ifbieq2d 3607 . . . 4 (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
179, 16sylan9eq 2262 . . 3 ((𝑥 = 𝑀𝑦 = 𝑁) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
1817adantl 277 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 = 𝑀𝑦 = 𝑁)) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
19 simpl 109 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
20 simpr 110 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
21 c0ex 8108 . . . 4 0 ∈ V
2221a1i 9 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 0 ∈ V)
23 1zzd 9441 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 1 ∈ ℤ)
24 nnuz 9726 . . . . . 6 ℕ = (ℤ‘1)
2524rabeqi 2772 . . . . 5 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} = {𝑛 ∈ (ℤ‘1) ∣ (𝑀𝑛𝑁𝑛)}
26 dvdsmul1 12290 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
2726adantr 276 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 · 𝑁))
28 simpll 527 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℤ)
29 simplr 528 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ)
3028, 29zmulcld 9543 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ)
31 dvdsabsb 12287 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
3228, 30, 31syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
3327, 32mpbid 147 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (abs‘(𝑀 · 𝑁)))
34 dvdsmul2 12291 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
3534adantr 276 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 · 𝑁))
36 dvdsabsb 12287 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3729, 30, 36syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3835, 37mpbid 147 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (abs‘(𝑀 · 𝑁)))
3928zcnd 9538 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∈ ℂ)
4029zcnd 9538 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℂ)
4139, 40absmuld 11671 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
42 simpr 110 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
43 ioran 756 . . . . . . . . . . . . 13 (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
4442, 43sylib 122 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
4544simpld 112 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑀 = 0)
4645neneqad 2459 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ≠ 0)
47 nnabscl 11577 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
4828, 46, 47syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘𝑀) ∈ ℕ)
4944simprd 114 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ 𝑁 = 0)
5049neneqad 2459 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ≠ 0)
51 nnabscl 11577 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
5229, 50, 51syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘𝑁) ∈ ℕ)
5348, 52nnmulcld 9127 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘𝑀) · (abs‘𝑁)) ∈ ℕ)
5441, 53eqeltrd 2286 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
55 breq2 4066 . . . . . . . . 9 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀𝑛𝑀 ∥ (abs‘(𝑀 · 𝑁))))
56 breq2 4066 . . . . . . . . 9 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁𝑛𝑁 ∥ (abs‘(𝑀 · 𝑁))))
5755, 56anbi12d 473 . . . . . . . 8 (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀𝑛𝑁𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
5857elrab3 2940 . . . . . . 7 ((abs‘(𝑀 · 𝑁)) ∈ ℕ → ((abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
5954, 58syl 14 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
6033, 38, 59mpbir2and 949 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
61 elfzelz 10189 . . . . . . 7 (𝑛 ∈ (1...(abs‘(𝑀 · 𝑁))) → 𝑛 ∈ ℤ)
62 zdvdsdc 12289 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑀𝑛)
6328, 61, 62syl2an 289 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑀𝑛)
64 zdvdsdc 12289 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑁𝑛)
6529, 61, 64syl2an 289 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID 𝑁𝑛)
6663, 65dcand 937 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...(abs‘(𝑀 · 𝑁)))) → DECID (𝑀𝑛𝑁𝑛))
6723, 25, 60, 66infssuzcldc 10422 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
6867elexd 2793 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ V)
69 lcmmndc 12550 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
7022, 68, 69ifcldadc 3612 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) ∈ V)
712, 18, 19, 20, 70ovmpod 6103 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wne 2380  {crab 2492  Vcvv 2779  ifcif 3582   class class class wbr 4062  cfv 5294  (class class class)co 5974  cmpo 5976  infcinf 7118  cr 7966  0cc0 7967  1c1 7968   · cmul 7972   < clt 8149  cn 9078  cz 9414  cuz 9690  ...cfz 10172  abscabs 11474  cdvds 12264   lcm clcm 12548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-lcm 12549
This theorem is referenced by:  lcmcom  12552  lcm0val  12553  lcmn0val  12554  lcmass  12573
  Copyright terms: Public domain W3C validator