Proof of Theorem infpnlem2
| Step | Hyp | Ref
| Expression |
| 1 | | infpnlem.1 |
. . . . 5
⊢ 𝐾 = ((!‘𝑁) + 1) |
| 2 | | nnnn0 9256 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 3 | 2 | faccld 10828 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(!‘𝑁) ∈
ℕ) |
| 4 | 3 | peano2nnd 9005 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((!‘𝑁) + 1) ∈
ℕ) |
| 5 | 1, 4 | eqeltrid 2283 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝐾 ∈
ℕ) |
| 6 | 3 | nnge1d 9033 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ≤
(!‘𝑁)) |
| 7 | | 1nn 9001 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 8 | | nnleltp1 9385 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤
(!‘𝑁) ↔ 1 <
((!‘𝑁) +
1))) |
| 9 | 7, 3, 8 | sylancr 414 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 ≤
(!‘𝑁) ↔ 1 <
((!‘𝑁) +
1))) |
| 10 | 6, 9 | mpbid 147 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 1 <
((!‘𝑁) +
1)) |
| 11 | 10, 1 | breqtrrdi 4075 |
. . . 4
⊢ (𝑁 ∈ ℕ → 1 <
𝐾) |
| 12 | | nncn 8998 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℂ) |
| 13 | | nnap0 9019 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 # 0) |
| 14 | 12, 13 | jca 306 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0)) |
| 15 | | dividap 8728 |
. . . . . 6
⊢ ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1) |
| 16 | 5, 14, 15 | 3syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1) |
| 17 | 16, 7 | eqeltrdi 2287 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ) |
| 18 | | breq2 4037 |
. . . . . 6
⊢ (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾)) |
| 19 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾)) |
| 20 | 19 | eleq1d 2265 |
. . . . . 6
⊢ (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ)) |
| 21 | 18, 20 | anbi12d 473 |
. . . . 5
⊢ (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ))) |
| 22 | 21 | rspcev 2868 |
. . . 4
⊢ ((𝐾 ∈ ℕ ∧ (1 <
𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
| 23 | 5, 11, 17, 22 | syl12anc 1247 |
. . 3
⊢ (𝑁 ∈ ℕ →
∃𝑗 ∈ ℕ (1
< 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
| 24 | | 1zzd 9353 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈
ℤ) |
| 25 | | nnz 9345 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
| 26 | 25 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
| 27 | | zdclt 9403 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 𝑗
∈ ℤ) → DECID 1 < 𝑗) |
| 28 | 24, 26, 27 | syl2anc 411 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID 1 < 𝑗) |
| 29 | | simpr 110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
| 30 | 5 | adantr 276 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈
ℕ) |
| 31 | 30 | nnzd 9447 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈
ℤ) |
| 32 | | dvdsdc 11963 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) →
DECID 𝑗
∥ 𝐾) |
| 33 | 29, 31, 32 | syl2anc 411 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID 𝑗
∥ 𝐾) |
| 34 | | nndivdvds 11961 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ∥ 𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ)) |
| 35 | 34 | dcbid 839 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
(DECID 𝑗
∥ 𝐾 ↔
DECID (𝐾 /
𝑗) ∈
ℕ)) |
| 36 | 5, 35 | sylan 283 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
(DECID 𝑗
∥ 𝐾 ↔
DECID (𝐾 /
𝑗) ∈
ℕ)) |
| 37 | 33, 36 | mpbid 147 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID (𝐾 /
𝑗) ∈
ℕ) |
| 38 | 28, 37 | dcand 934 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
| 39 | 38 | ralrimiva 2570 |
. . 3
⊢ (𝑁 ∈ ℕ →
∀𝑗 ∈ ℕ
DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
| 40 | | breq2 4037 |
. . . . 5
⊢ (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘)) |
| 41 | | oveq2 5930 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘)) |
| 42 | 41 | eleq1d 2265 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ)) |
| 43 | 40, 42 | anbi12d 473 |
. . . 4
⊢ (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ))) |
| 44 | 43 | nnwosdc 12206 |
. . 3
⊢
((∃𝑗 ∈
ℕ (1 < 𝑗 ∧
(𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ
DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
| 45 | 23, 39, 44 | syl2anc 411 |
. 2
⊢ (𝑁 ∈ ℕ →
∃𝑗 ∈ ℕ ((1
< 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
| 46 | 1 | infpnlem1 12528 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1
< 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
| 47 | 46 | reximdva 2599 |
. 2
⊢ (𝑁 ∈ ℕ →
(∃𝑗 ∈ ℕ
((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
| 48 | 45, 47 | mpd 13 |
1
⊢ (𝑁 ∈ ℕ →
∃𝑗 ∈ ℕ
(𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |