Proof of Theorem infpnlem2
Step | Hyp | Ref
| Expression |
1 | | infpnlem.1 |
. . . . 5
⊢ 𝐾 = ((!‘𝑁) + 1) |
2 | | nnnn0 9142 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | 2 | faccld 10670 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(!‘𝑁) ∈
ℕ) |
4 | 3 | peano2nnd 8893 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((!‘𝑁) + 1) ∈
ℕ) |
5 | 1, 4 | eqeltrid 2257 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝐾 ∈
ℕ) |
6 | 3 | nnge1d 8921 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ≤
(!‘𝑁)) |
7 | | 1nn 8889 |
. . . . . . 7
⊢ 1 ∈
ℕ |
8 | | nnleltp1 9271 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤
(!‘𝑁) ↔ 1 <
((!‘𝑁) +
1))) |
9 | 7, 3, 8 | sylancr 412 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 ≤
(!‘𝑁) ↔ 1 <
((!‘𝑁) +
1))) |
10 | 6, 9 | mpbid 146 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 1 <
((!‘𝑁) +
1)) |
11 | 10, 1 | breqtrrdi 4031 |
. . . 4
⊢ (𝑁 ∈ ℕ → 1 <
𝐾) |
12 | | nncn 8886 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℂ) |
13 | | nnap0 8907 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 # 0) |
14 | 12, 13 | jca 304 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0)) |
15 | | dividap 8618 |
. . . . . 6
⊢ ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1) |
16 | 5, 14, 15 | 3syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1) |
17 | 16, 7 | eqeltrdi 2261 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ) |
18 | | breq2 3993 |
. . . . . 6
⊢ (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾)) |
19 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾)) |
20 | 19 | eleq1d 2239 |
. . . . . 6
⊢ (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ)) |
21 | 18, 20 | anbi12d 470 |
. . . . 5
⊢ (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ))) |
22 | 21 | rspcev 2834 |
. . . 4
⊢ ((𝐾 ∈ ℕ ∧ (1 <
𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
23 | 5, 11, 17, 22 | syl12anc 1231 |
. . 3
⊢ (𝑁 ∈ ℕ →
∃𝑗 ∈ ℕ (1
< 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
24 | | 1zzd 9239 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈
ℤ) |
25 | | nnz 9231 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
26 | 25 | adantl 275 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
27 | | zdclt 9289 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 𝑗
∈ ℤ) → DECID 1 < 𝑗) |
28 | 24, 26, 27 | syl2anc 409 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID 1 < 𝑗) |
29 | | simpr 109 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
30 | 5 | adantr 274 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈
ℕ) |
31 | 30 | nnzd 9333 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈
ℤ) |
32 | | dvdsdc 11760 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) →
DECID 𝑗
∥ 𝐾) |
33 | 29, 31, 32 | syl2anc 409 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID 𝑗
∥ 𝐾) |
34 | | nndivdvds 11758 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ∥ 𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ)) |
35 | 34 | dcbid 833 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
(DECID 𝑗
∥ 𝐾 ↔
DECID (𝐾 /
𝑗) ∈
ℕ)) |
36 | 5, 35 | sylan 281 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
(DECID 𝑗
∥ 𝐾 ↔
DECID (𝐾 /
𝑗) ∈
ℕ)) |
37 | 33, 36 | mpbid 146 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID (𝐾 /
𝑗) ∈
ℕ) |
38 | | dcan2 929 |
. . . . 5
⊢
(DECID 1 < 𝑗 → (DECID (𝐾 / 𝑗) ∈ ℕ → DECID
(1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))) |
39 | 28, 37, 38 | sylc 62 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
40 | 39 | ralrimiva 2543 |
. . 3
⊢ (𝑁 ∈ ℕ →
∀𝑗 ∈ ℕ
DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) |
41 | | breq2 3993 |
. . . . 5
⊢ (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘)) |
42 | | oveq2 5861 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘)) |
43 | 42 | eleq1d 2239 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ)) |
44 | 41, 43 | anbi12d 470 |
. . . 4
⊢ (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ))) |
45 | 44 | nnwosdc 11994 |
. . 3
⊢
((∃𝑗 ∈
ℕ (1 < 𝑗 ∧
(𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ
DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
46 | 23, 40, 45 | syl2anc 409 |
. 2
⊢ (𝑁 ∈ ℕ →
∃𝑗 ∈ ℕ ((1
< 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘))) |
47 | 1 | infpnlem1 12311 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1
< 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
48 | 47 | reximdva 2572 |
. 2
⊢ (𝑁 ∈ ℕ →
(∃𝑗 ∈ ℕ
((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗 ≤ 𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))) |
49 | 46, 48 | mpd 13 |
1
⊢ (𝑁 ∈ ℕ →
∃𝑗 ∈ ℕ
(𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) |