ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 GIF version

Theorem infpnlem2 12299
Description: Lemma for infpn 12300. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Distinct variable groups:   𝑗,𝑘,𝑁   𝑗,𝐾,𝑘

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5 𝐾 = ((!‘𝑁) + 1)
2 nnnn0 9129 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32faccld 10657 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43peano2nnd 8880 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
51, 4eqeltrid 2257 . . . 4 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
63nnge1d 8908 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁))
7 1nn 8876 . . . . . . 7 1 ∈ ℕ
8 nnleltp1 9258 . . . . . . 7 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
97, 3, 8sylancr 412 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
106, 9mpbid 146 . . . . 5 (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1))
1110, 1breqtrrdi 4029 . . . 4 (𝑁 ∈ ℕ → 1 < 𝐾)
12 nncn 8873 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
13 nnap0 8894 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 # 0)
1412, 13jca 304 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0))
15 dividap 8605 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1)
165, 14, 153syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1)
1716, 7eqeltrdi 2261 . . . 4 (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ)
18 breq2 3991 . . . . . 6 (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾))
19 oveq2 5858 . . . . . . 7 (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾))
2019eleq1d 2239 . . . . . 6 (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ))
2118, 20anbi12d 470 . . . . 5 (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)))
2221rspcev 2834 . . . 4 ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
235, 11, 17, 22syl12anc 1231 . . 3 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
24 1zzd 9226 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
25 nnz 9218 . . . . . . 7 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2625adantl 275 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
27 zdclt 9276 . . . . . 6 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → DECID 1 < 𝑗)
2824, 26, 27syl2anc 409 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 1 < 𝑗)
29 simpr 109 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
305adantr 274 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℕ)
3130nnzd 9320 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℤ)
32 dvdsdc 11747 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) → DECID 𝑗𝐾)
3329, 31, 32syl2anc 409 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗𝐾)
34 nndivdvds 11745 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ))
3534dcbid 833 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
365, 35sylan 281 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
3733, 36mpbid 146 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (𝐾 / 𝑗) ∈ ℕ)
38 dcan2 929 . . . . 5 (DECID 1 < 𝑗 → (DECID (𝐾 / 𝑗) ∈ ℕ → DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)))
3928, 37, 38sylc 62 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
4039ralrimiva 2543 . . 3 (𝑁 ∈ ℕ → ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
41 breq2 3991 . . . . 5 (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘))
42 oveq2 5858 . . . . . 6 (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘))
4342eleq1d 2239 . . . . 5 (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ))
4441, 43anbi12d 470 . . . 4 (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ)))
4544nnwosdc 11981 . . 3 ((∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
4623, 40, 45syl2anc 409 . 2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
471infpnlem1 12298 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4847reximdva 2572 . 2 (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4946, 48mpd 13 1 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3987  cfv 5196  (class class class)co 5850  cc 7759  0cc0 7761  1c1 7762   + caddc 7764   < clt 7941  cle 7942   # cap 8487   / cdiv 8576  cn 8865  cz 9199  !cfa 10646  cdvds 11736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-fac 10647  df-dvds 11737
This theorem is referenced by:  infpn  12300
  Copyright terms: Public domain W3C validator