ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 GIF version

Theorem infpnlem2 12501
Description: Lemma for infpn 12502. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Distinct variable groups:   𝑗,𝑘,𝑁   𝑗,𝐾,𝑘

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5 𝐾 = ((!‘𝑁) + 1)
2 nnnn0 9250 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32faccld 10810 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43peano2nnd 8999 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
51, 4eqeltrid 2280 . . . 4 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
63nnge1d 9027 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁))
7 1nn 8995 . . . . . . 7 1 ∈ ℕ
8 nnleltp1 9379 . . . . . . 7 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
97, 3, 8sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
106, 9mpbid 147 . . . . 5 (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1))
1110, 1breqtrrdi 4072 . . . 4 (𝑁 ∈ ℕ → 1 < 𝐾)
12 nncn 8992 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
13 nnap0 9013 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 # 0)
1412, 13jca 306 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0))
15 dividap 8722 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1)
165, 14, 153syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1)
1716, 7eqeltrdi 2284 . . . 4 (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ)
18 breq2 4034 . . . . . 6 (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾))
19 oveq2 5927 . . . . . . 7 (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾))
2019eleq1d 2262 . . . . . 6 (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ))
2118, 20anbi12d 473 . . . . 5 (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)))
2221rspcev 2865 . . . 4 ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
235, 11, 17, 22syl12anc 1247 . . 3 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
24 1zzd 9347 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
25 nnz 9339 . . . . . . 7 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2625adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
27 zdclt 9397 . . . . . 6 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → DECID 1 < 𝑗)
2824, 26, 27syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 1 < 𝑗)
29 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
305adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℕ)
3130nnzd 9441 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℤ)
32 dvdsdc 11944 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) → DECID 𝑗𝐾)
3329, 31, 32syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗𝐾)
34 nndivdvds 11942 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ))
3534dcbid 839 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
365, 35sylan 283 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
3733, 36mpbid 147 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (𝐾 / 𝑗) ∈ ℕ)
3828, 37dcand 934 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
3938ralrimiva 2567 . . 3 (𝑁 ∈ ℕ → ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
40 breq2 4034 . . . . 5 (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘))
41 oveq2 5927 . . . . . 6 (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘))
4241eleq1d 2262 . . . . 5 (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ))
4340, 42anbi12d 473 . . . 4 (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ)))
4443nnwosdc 12179 . . 3 ((∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
4523, 39, 44syl2anc 411 . 2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
461infpnlem1 12500 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4746reximdva 2596 . 2 (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4845, 47mpd 13 1 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wrex 2473   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   < clt 8056  cle 8057   # cap 8602   / cdiv 8693  cn 8984  cz 9320  !cfa 10799  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-fac 10800  df-dvds 11934
This theorem is referenced by:  infpn  12502
  Copyright terms: Public domain W3C validator