ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 GIF version

Theorem infpnlem2 12392
Description: Lemma for infpn 12393. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Distinct variable groups:   𝑗,𝑘,𝑁   𝑗,𝐾,𝑘

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5 𝐾 = ((!‘𝑁) + 1)
2 nnnn0 9213 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32faccld 10748 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43peano2nnd 8964 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
51, 4eqeltrid 2276 . . . 4 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
63nnge1d 8992 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁))
7 1nn 8960 . . . . . . 7 1 ∈ ℕ
8 nnleltp1 9342 . . . . . . 7 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
97, 3, 8sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
106, 9mpbid 147 . . . . 5 (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1))
1110, 1breqtrrdi 4060 . . . 4 (𝑁 ∈ ℕ → 1 < 𝐾)
12 nncn 8957 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
13 nnap0 8978 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 # 0)
1412, 13jca 306 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0))
15 dividap 8688 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1)
165, 14, 153syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1)
1716, 7eqeltrdi 2280 . . . 4 (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ)
18 breq2 4022 . . . . . 6 (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾))
19 oveq2 5904 . . . . . . 7 (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾))
2019eleq1d 2258 . . . . . 6 (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ))
2118, 20anbi12d 473 . . . . 5 (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)))
2221rspcev 2856 . . . 4 ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
235, 11, 17, 22syl12anc 1247 . . 3 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
24 1zzd 9310 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
25 nnz 9302 . . . . . . 7 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2625adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
27 zdclt 9360 . . . . . 6 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → DECID 1 < 𝑗)
2824, 26, 27syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 1 < 𝑗)
29 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
305adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℕ)
3130nnzd 9404 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℤ)
32 dvdsdc 11837 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) → DECID 𝑗𝐾)
3329, 31, 32syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗𝐾)
34 nndivdvds 11835 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ))
3534dcbid 839 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
365, 35sylan 283 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
3733, 36mpbid 147 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (𝐾 / 𝑗) ∈ ℕ)
3828, 37dcand 934 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
3938ralrimiva 2563 . . 3 (𝑁 ∈ ℕ → ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
40 breq2 4022 . . . . 5 (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘))
41 oveq2 5904 . . . . . 6 (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘))
4241eleq1d 2258 . . . . 5 (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ))
4340, 42anbi12d 473 . . . 4 (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ)))
4443nnwosdc 12072 . . 3 ((∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
4523, 39, 44syl2anc 411 . 2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
461infpnlem1 12391 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4746reximdva 2592 . 2 (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4845, 47mpd 13 1 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2160  wral 2468  wrex 2469   class class class wbr 4018  cfv 5235  (class class class)co 5896  cc 7839  0cc0 7841  1c1 7842   + caddc 7844   < clt 8022  cle 8023   # cap 8568   / cdiv 8659  cn 8949  cz 9283  !cfa 10737  cdvds 11826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-fac 10738  df-dvds 11827
This theorem is referenced by:  infpn  12393
  Copyright terms: Public domain W3C validator