ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 GIF version

Theorem infpnlem2 12529
Description: Lemma for infpn 12530. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Distinct variable groups:   𝑗,𝑘,𝑁   𝑗,𝐾,𝑘

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5 𝐾 = ((!‘𝑁) + 1)
2 nnnn0 9256 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32faccld 10828 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43peano2nnd 9005 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
51, 4eqeltrid 2283 . . . 4 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
63nnge1d 9033 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁))
7 1nn 9001 . . . . . . 7 1 ∈ ℕ
8 nnleltp1 9385 . . . . . . 7 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
97, 3, 8sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
106, 9mpbid 147 . . . . 5 (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1))
1110, 1breqtrrdi 4075 . . . 4 (𝑁 ∈ ℕ → 1 < 𝐾)
12 nncn 8998 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
13 nnap0 9019 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 # 0)
1412, 13jca 306 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0))
15 dividap 8728 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1)
165, 14, 153syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1)
1716, 7eqeltrdi 2287 . . . 4 (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ)
18 breq2 4037 . . . . . 6 (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾))
19 oveq2 5930 . . . . . . 7 (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾))
2019eleq1d 2265 . . . . . 6 (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ))
2118, 20anbi12d 473 . . . . 5 (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)))
2221rspcev 2868 . . . 4 ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
235, 11, 17, 22syl12anc 1247 . . 3 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
24 1zzd 9353 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
25 nnz 9345 . . . . . . 7 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2625adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
27 zdclt 9403 . . . . . 6 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → DECID 1 < 𝑗)
2824, 26, 27syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 1 < 𝑗)
29 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
305adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℕ)
3130nnzd 9447 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℤ)
32 dvdsdc 11963 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) → DECID 𝑗𝐾)
3329, 31, 32syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗𝐾)
34 nndivdvds 11961 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ))
3534dcbid 839 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
365, 35sylan 283 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
3733, 36mpbid 147 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (𝐾 / 𝑗) ∈ ℕ)
3828, 37dcand 934 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
3938ralrimiva 2570 . . 3 (𝑁 ∈ ℕ → ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
40 breq2 4037 . . . . 5 (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘))
41 oveq2 5930 . . . . . 6 (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘))
4241eleq1d 2265 . . . . 5 (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ))
4340, 42anbi12d 473 . . . 4 (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ)))
4443nnwosdc 12206 . . 3 ((∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
4523, 39, 44syl2anc 411 . 2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
461infpnlem1 12528 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4746reximdva 2599 . 2 (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4845, 47mpd 13 1 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062   # cap 8608   / cdiv 8699  cn 8990  cz 9326  !cfa 10817  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-fac 10818  df-dvds 11953
This theorem is referenced by:  infpn  12530
  Copyright terms: Public domain W3C validator