ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem2 GIF version

Theorem infpnlem2 12602
Description: Lemma for infpn 12603. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Distinct variable groups:   𝑗,𝑘,𝑁   𝑗,𝐾,𝑘

Proof of Theorem infpnlem2
StepHypRef Expression
1 infpnlem.1 . . . . 5 𝐾 = ((!‘𝑁) + 1)
2 nnnn0 9284 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32faccld 10862 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43peano2nnd 9033 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
51, 4eqeltrid 2291 . . . 4 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
63nnge1d 9061 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ (!‘𝑁))
7 1nn 9029 . . . . . . 7 1 ∈ ℕ
8 nnleltp1 9414 . . . . . . 7 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
97, 3, 8sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ (!‘𝑁) ↔ 1 < ((!‘𝑁) + 1)))
106, 9mpbid 147 . . . . 5 (𝑁 ∈ ℕ → 1 < ((!‘𝑁) + 1))
1110, 1breqtrrdi 4085 . . . 4 (𝑁 ∈ ℕ → 1 < 𝐾)
12 nncn 9026 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
13 nnap0 9047 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 # 0)
1412, 13jca 306 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 ∈ ℂ ∧ 𝐾 # 0))
15 dividap 8756 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐾 # 0) → (𝐾 / 𝐾) = 1)
165, 14, 153syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝐾 / 𝐾) = 1)
1716, 7eqeltrdi 2295 . . . 4 (𝑁 ∈ ℕ → (𝐾 / 𝐾) ∈ ℕ)
18 breq2 4047 . . . . . 6 (𝑗 = 𝐾 → (1 < 𝑗 ↔ 1 < 𝐾))
19 oveq2 5942 . . . . . . 7 (𝑗 = 𝐾 → (𝐾 / 𝑗) = (𝐾 / 𝐾))
2019eleq1d 2273 . . . . . 6 (𝑗 = 𝐾 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝐾) ∈ ℕ))
2118, 20anbi12d 473 . . . . 5 (𝑗 = 𝐾 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)))
2221rspcev 2876 . . . 4 ((𝐾 ∈ ℕ ∧ (1 < 𝐾 ∧ (𝐾 / 𝐾) ∈ ℕ)) → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
235, 11, 17, 22syl12anc 1247 . . 3 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
24 1zzd 9381 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℤ)
25 nnz 9373 . . . . . . 7 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
2625adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
27 zdclt 9432 . . . . . 6 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → DECID 1 < 𝑗)
2824, 26, 27syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 1 < 𝑗)
29 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
305adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℕ)
3130nnzd 9476 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℤ)
32 dvdsdc 12028 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝐾 ∈ ℤ) → DECID 𝑗𝐾)
3329, 31, 32syl2anc 411 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗𝐾)
34 nndivdvds 12026 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗𝐾 ↔ (𝐾 / 𝑗) ∈ ℕ))
3534dcbid 839 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
365, 35sylan 283 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (DECID 𝑗𝐾DECID (𝐾 / 𝑗) ∈ ℕ))
3733, 36mpbid 147 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (𝐾 / 𝑗) ∈ ℕ)
3828, 37dcand 934 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
3938ralrimiva 2578 . . 3 (𝑁 ∈ ℕ → ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ))
40 breq2 4047 . . . . 5 (𝑗 = 𝑘 → (1 < 𝑗 ↔ 1 < 𝑘))
41 oveq2 5942 . . . . . 6 (𝑗 = 𝑘 → (𝐾 / 𝑗) = (𝐾 / 𝑘))
4241eleq1d 2273 . . . . 5 (𝑗 = 𝑘 → ((𝐾 / 𝑗) ∈ ℕ ↔ (𝐾 / 𝑘) ∈ ℕ))
4340, 42anbi12d 473 . . . 4 (𝑗 = 𝑘 → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ↔ (1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ)))
4443nnwosdc 12279 . . 3 ((∃𝑗 ∈ ℕ (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ DECID (1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ)) → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
4523, 39, 44syl2anc 411 . 2 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)))
461infpnlem1 12601 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4746reximdva 2607 . 2 (𝑁 ∈ ℕ → (∃𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) ∧ ∀𝑘 ∈ ℕ ((1 < 𝑘 ∧ (𝐾 / 𝑘) ∈ ℕ) → 𝑗𝑘)) → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))))
4845, 47mpd 13 1 (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  wrex 2484   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905  0cc0 7907  1c1 7908   + caddc 7910   < clt 8089  cle 8090   # cap 8636   / cdiv 8727  cn 9018  cz 9354  !cfa 10851  cdvds 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-fac 10852  df-dvds 12018
This theorem is referenced by:  infpn  12603
  Copyright terms: Public domain W3C validator