| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdec10 | GIF version | ||
| Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 9575 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9p1e10 9576 | . . . 4 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | oveq1i 6010 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
| 4 | 3 | oveq1i 6010 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
| 5 | 1, 4 | eqtri 2250 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 9c9 9164 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-0id 8103 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-dec 9575 |
| This theorem is referenced by: decnncl 9593 dec0u 9594 dec0h 9595 decnncl2 9597 declt 9601 decltc 9602 decsuc 9604 decle 9607 declti 9611 decsucc 9614 dec10p 9616 decma 9624 decmac 9625 decma2c 9626 decadd 9627 decaddc 9628 decsubi 9636 decmul1 9637 decmul1c 9638 decmul2c 9639 decmul10add 9642 5t5e25 9676 6t6e36 9681 8t6e48 9692 9t11e99 9703 3dec 10931 3dvdsdec 12371 dec2dvds 12929 dec5dvds 12930 dec5nprm 12932 dec2nprm 12933 decsplit1 12946 decsplit 12947 |
| Copyright terms: Public domain | W3C validator |