Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfdec10 | GIF version |
Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9323 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9p1e10 9324 | . . . 4 ⊢ (9 + 1) = ;10 | |
3 | 2 | oveq1i 5852 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
4 | 3 | oveq1i 5852 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
5 | 1, 4 | eqtri 2186 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 9c9 8915 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-0id 7861 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-dec 9323 |
This theorem is referenced by: decnncl 9341 dec0u 9342 dec0h 9343 decnncl2 9345 declt 9349 decltc 9350 decsuc 9352 decle 9355 declti 9359 decsucc 9362 dec10p 9364 decma 9372 decmac 9373 decma2c 9374 decadd 9375 decaddc 9376 decsubi 9384 decmul1 9385 decmul1c 9386 decmul2c 9387 decmul10add 9390 5t5e25 9424 6t6e36 9429 8t6e48 9440 9t11e99 9451 3dec 10627 3dvdsdec 11802 |
Copyright terms: Public domain | W3C validator |