| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdec10 | GIF version | ||
| Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 9477 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9p1e10 9478 | . . . 4 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | oveq1i 5935 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
| 4 | 3 | oveq1i 5935 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
| 5 | 1, 4 | eqtri 2217 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 0cc0 7898 1c1 7899 + caddc 7901 · cmul 7903 9c9 9067 ;cdc 9476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-0id 8006 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-dec 9477 |
| This theorem is referenced by: decnncl 9495 dec0u 9496 dec0h 9497 decnncl2 9499 declt 9503 decltc 9504 decsuc 9506 decle 9509 declti 9513 decsucc 9516 dec10p 9518 decma 9526 decmac 9527 decma2c 9528 decadd 9529 decaddc 9530 decsubi 9538 decmul1 9539 decmul1c 9540 decmul2c 9541 decmul10add 9544 5t5e25 9578 6t6e36 9583 8t6e48 9594 9t11e99 9605 3dec 10825 3dvdsdec 12049 dec2dvds 12607 dec5dvds 12608 dec5nprm 12610 dec2nprm 12611 decsplit1 12624 decsplit 12625 |
| Copyright terms: Public domain | W3C validator |