ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdec10 GIF version

Theorem dfdec10 9346
Description: Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
dfdec10 𝐴𝐵 = ((10 · 𝐴) + 𝐵)

Proof of Theorem dfdec10
StepHypRef Expression
1 df-dec 9344 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
2 9p1e10 9345 . . . 4 (9 + 1) = 10
32oveq1i 5863 . . 3 ((9 + 1) · 𝐴) = (10 · 𝐴)
43oveq1i 5863 . 2 (((9 + 1) · 𝐴) + 𝐵) = ((10 · 𝐴) + 𝐵)
51, 4eqtri 2191 1 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  (class class class)co 5853  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  9c9 8936  cdc 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-1rid 7881  ax-0id 7882  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-dec 9344
This theorem is referenced by:  decnncl  9362  dec0u  9363  dec0h  9364  decnncl2  9366  declt  9370  decltc  9371  decsuc  9373  decle  9376  declti  9380  decsucc  9383  dec10p  9385  decma  9393  decmac  9394  decma2c  9395  decadd  9396  decaddc  9397  decsubi  9405  decmul1  9406  decmul1c  9407  decmul2c  9408  decmul10add  9411  5t5e25  9445  6t6e36  9450  8t6e48  9461  9t11e99  9472  3dec  10648  3dvdsdec  11824
  Copyright terms: Public domain W3C validator