Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfdec10 | GIF version |
Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9344 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 9p1e10 9345 | . . . 4 ⊢ (9 + 1) = ;10 | |
3 | 2 | oveq1i 5863 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
4 | 3 | oveq1i 5863 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
5 | 1, 4 | eqtri 2191 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 9c9 8936 ;cdc 9343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-0id 7882 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-dec 9344 |
This theorem is referenced by: decnncl 9362 dec0u 9363 dec0h 9364 decnncl2 9366 declt 9370 decltc 9371 decsuc 9373 decle 9376 declti 9380 decsucc 9383 dec10p 9385 decma 9393 decmac 9394 decma2c 9395 decadd 9396 decaddc 9397 decsubi 9405 decmul1 9406 decmul1c 9407 decmul2c 9408 decmul10add 9411 5t5e25 9445 6t6e36 9450 8t6e48 9461 9t11e99 9472 3dec 10648 3dvdsdec 11824 |
Copyright terms: Public domain | W3C validator |