ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdec10 GIF version

Theorem dfdec10 9454
Description: Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
dfdec10 𝐴𝐵 = ((10 · 𝐴) + 𝐵)

Proof of Theorem dfdec10
StepHypRef Expression
1 df-dec 9452 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
2 9p1e10 9453 . . . 4 (9 + 1) = 10
32oveq1i 5929 . . 3 ((9 + 1) · 𝐴) = (10 · 𝐴)
43oveq1i 5929 . 2 (((9 + 1) · 𝐴) + 𝐵) = ((10 · 𝐴) + 𝐵)
51, 4eqtri 2214 1 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5919  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  9c9 9042  cdc 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-1rid 7981  ax-0id 7982  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-dec 9452
This theorem is referenced by:  decnncl  9470  dec0u  9471  dec0h  9472  decnncl2  9474  declt  9478  decltc  9479  decsuc  9481  decle  9484  declti  9488  decsucc  9491  dec10p  9493  decma  9501  decmac  9502  decma2c  9503  decadd  9504  decaddc  9505  decsubi  9513  decmul1  9514  decmul1c  9515  decmul2c  9516  decmul10add  9519  5t5e25  9553  6t6e36  9558  8t6e48  9569  9t11e99  9580  3dec  10788  3dvdsdec  12009
  Copyright terms: Public domain W3C validator