| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdec10 | GIF version | ||
| Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 9475 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9p1e10 9476 | . . . 4 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | oveq1i 5935 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
| 4 | 3 | oveq1i 5935 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
| 5 | 1, 4 | eqtri 2217 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 · cmul 7901 9c9 9065 ;cdc 9474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-0id 8004 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-dec 9475 |
| This theorem is referenced by: decnncl 9493 dec0u 9494 dec0h 9495 decnncl2 9497 declt 9501 decltc 9502 decsuc 9504 decle 9507 declti 9511 decsucc 9514 dec10p 9516 decma 9524 decmac 9525 decma2c 9526 decadd 9527 decaddc 9528 decsubi 9536 decmul1 9537 decmul1c 9538 decmul2c 9539 decmul10add 9542 5t5e25 9576 6t6e36 9581 8t6e48 9592 9t11e99 9603 3dec 10823 3dvdsdec 12047 dec2dvds 12605 dec5dvds 12606 dec5nprm 12608 dec2nprm 12609 decsplit1 12622 decsplit 12623 |
| Copyright terms: Public domain | W3C validator |