| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdec10 | GIF version | ||
| Description: Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfdec10 | ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 9520 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 9p1e10 9521 | . . . 4 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | oveq1i 5966 | . . 3 ⊢ ((9 + 1) · 𝐴) = (;10 · 𝐴) |
| 4 | 3 | oveq1i 5966 | . 2 ⊢ (((9 + 1) · 𝐴) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
| 5 | 1, 4 | eqtri 2227 | 1 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 · cmul 7945 9c9 9109 ;cdc 9519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4169 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-1rid 8047 ax-0id 8048 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-iota 5240 df-fv 5287 df-ov 5959 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-dec 9520 |
| This theorem is referenced by: decnncl 9538 dec0u 9539 dec0h 9540 decnncl2 9542 declt 9546 decltc 9547 decsuc 9549 decle 9552 declti 9556 decsucc 9559 dec10p 9561 decma 9569 decmac 9570 decma2c 9571 decadd 9572 decaddc 9573 decsubi 9581 decmul1 9582 decmul1c 9583 decmul2c 9584 decmul10add 9587 5t5e25 9621 6t6e36 9626 8t6e48 9637 9t11e99 9648 3dec 10876 3dvdsdec 12246 dec2dvds 12804 dec5dvds 12805 dec5nprm 12807 dec2nprm 12808 decsplit1 12821 decsplit 12822 |
| Copyright terms: Public domain | W3C validator |