ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  11multnc GIF version

Theorem 11multnc 9633
Description: The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.)
Hypothesis
Ref Expression
11multnc.n 𝑁 ∈ ℕ0
Assertion
Ref Expression
11multnc (𝑁 · 11) = 𝑁𝑁

Proof of Theorem 11multnc
StepHypRef Expression
1 11multnc.n . . 3 𝑁 ∈ ℕ0
2 1nn0 9373 . . 3 1 ∈ ℕ0
31, 2, 2decmulnc 9632 . 2 (𝑁 · 11) = (𝑁 · 1)(𝑁 · 1)
41nn0cni 9369 . . . 4 𝑁 ∈ ℂ
54mulridi 8136 . . 3 (𝑁 · 1) = 𝑁
65, 5deceq12i 9574 . 2 (𝑁 · 1)(𝑁 · 1) = 𝑁𝑁
73, 6eqtri 2250 1 (𝑁 · 11) = 𝑁𝑁
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 5994  1c1 7988   · cmul 7992  0cn0 9357  cdc 9566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator