ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numnncl GIF version

Theorem numnncl 9366
Description: Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
numnncl.3 𝐵 ∈ ℕ
Assertion
Ref Expression
numnncl ((𝑇 · 𝐴) + 𝐵) ∈ ℕ

Proof of Theorem numnncl
StepHypRef Expression
1 numnncl.1 . . 3 𝑇 ∈ ℕ0
2 numnncl.2 . . 3 𝐴 ∈ ℕ0
31, 2nn0mulcli 9187 . 2 (𝑇 · 𝐴) ∈ ℕ0
4 numnncl.3 . 2 𝐵 ∈ ℕ
5 nn0nnaddcl 9180 . 2 (((𝑇 · 𝐴) ∈ ℕ0𝐵 ∈ ℕ) → ((𝑇 · 𝐴) + 𝐵) ∈ ℕ)
63, 4, 5mp2an 426 1 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2146  (class class class)co 5865   + caddc 7789   · cmul 7791  cn 8892  0cn0 9149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104  df-inn 8893  df-n0 9150
This theorem is referenced by:  decnncl  9376
  Copyright terms: Public domain W3C validator