ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numnncl GIF version

Theorem numnncl 9159
Description: Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
numnncl.3 𝐵 ∈ ℕ
Assertion
Ref Expression
numnncl ((𝑇 · 𝐴) + 𝐵) ∈ ℕ

Proof of Theorem numnncl
StepHypRef Expression
1 numnncl.1 . . 3 𝑇 ∈ ℕ0
2 numnncl.2 . . 3 𝐴 ∈ ℕ0
31, 2nn0mulcli 8983 . 2 (𝑇 · 𝐴) ∈ ℕ0
4 numnncl.3 . 2 𝐵 ∈ ℕ
5 nn0nnaddcl 8976 . 2 (((𝑇 · 𝐴) ∈ ℕ0𝐵 ∈ ℕ) → ((𝑇 · 𝐴) + 𝐵) ∈ ℕ)
63, 4, 5mp2an 422 1 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 1465  (class class class)co 5742   + caddc 7591   · cmul 7593  cn 8688  0cn0 8945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-sub 7903  df-inn 8689  df-n0 8946
This theorem is referenced by:  decnncl  9169
  Copyright terms: Public domain W3C validator