![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decmul10add | GIF version |
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul10add.1 | ⊢ 𝐴 ∈ ℕ0 |
decmul10add.2 | ⊢ 𝐵 ∈ ℕ0 |
decmul10add.3 | ⊢ 𝑀 ∈ ℕ0 |
decmul10add.4 | ⊢ 𝐸 = (𝑀 · 𝐴) |
decmul10add.5 | ⊢ 𝐹 = (𝑀 · 𝐵) |
Ref | Expression |
---|---|
decmul10add | ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 8870 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 1 | oveq2i 5655 | . 2 ⊢ (𝑀 · ;𝐴𝐵) = (𝑀 · ((;10 · 𝐴) + 𝐵)) |
3 | decmul10add.3 | . . . 4 ⊢ 𝑀 ∈ ℕ0 | |
4 | 3 | nn0cni 8675 | . . 3 ⊢ 𝑀 ∈ ℂ |
5 | 10nn0 8884 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
6 | decmul10add.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
7 | 5, 6 | nn0mulcli 8701 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
8 | 7 | nn0cni 8675 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
9 | decmul10add.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
10 | 9 | nn0cni 8675 | . . 3 ⊢ 𝐵 ∈ ℂ |
11 | 4, 8, 10 | adddii 7488 | . 2 ⊢ (𝑀 · ((;10 · 𝐴) + 𝐵)) = ((𝑀 · (;10 · 𝐴)) + (𝑀 · 𝐵)) |
12 | 5 | nn0cni 8675 | . . . . 5 ⊢ ;10 ∈ ℂ |
13 | 6 | nn0cni 8675 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
14 | 4, 12, 13 | mul12i 7618 | . . . 4 ⊢ (𝑀 · (;10 · 𝐴)) = (;10 · (𝑀 · 𝐴)) |
15 | 3, 6 | nn0mulcli 8701 | . . . . 5 ⊢ (𝑀 · 𝐴) ∈ ℕ0 |
16 | 15 | dec0u 8887 | . . . 4 ⊢ (;10 · (𝑀 · 𝐴)) = ;(𝑀 · 𝐴)0 |
17 | decmul10add.4 | . . . . . 6 ⊢ 𝐸 = (𝑀 · 𝐴) | |
18 | 17 | eqcomi 2092 | . . . . 5 ⊢ (𝑀 · 𝐴) = 𝐸 |
19 | 18 | deceq1i 8873 | . . . 4 ⊢ ;(𝑀 · 𝐴)0 = ;𝐸0 |
20 | 14, 16, 19 | 3eqtri 2112 | . . 3 ⊢ (𝑀 · (;10 · 𝐴)) = ;𝐸0 |
21 | decmul10add.5 | . . . 4 ⊢ 𝐹 = (𝑀 · 𝐵) | |
22 | 21 | eqcomi 2092 | . . 3 ⊢ (𝑀 · 𝐵) = 𝐹 |
23 | 20, 22 | oveq12i 5656 | . 2 ⊢ ((𝑀 · (;10 · 𝐴)) + (𝑀 · 𝐵)) = (;𝐸0 + 𝐹) |
24 | 2, 11, 23 | 3eqtri 2112 | 1 ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 (class class class)co 5644 0cc0 7340 1c1 7341 + caddc 7343 · cmul 7345 ℕ0cn0 8663 ;cdc 8867 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-setind 4351 ax-cnex 7426 ax-resscn 7427 ax-1cn 7428 ax-1re 7429 ax-icn 7430 ax-addcl 7431 ax-addrcl 7432 ax-mulcl 7433 ax-addcom 7435 ax-mulcom 7436 ax-addass 7437 ax-mulass 7438 ax-distr 7439 ax-i2m1 7440 ax-1rid 7442 ax-0id 7443 ax-rnegex 7444 ax-cnre 7446 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-int 3687 df-br 3844 df-opab 3898 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-iota 4975 df-fun 5012 df-fv 5018 df-riota 5600 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-sub 7645 df-inn 8413 df-2 8471 df-3 8472 df-4 8473 df-5 8474 df-6 8475 df-7 8476 df-8 8477 df-9 8478 df-n0 8664 df-dec 8868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |