Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul10add GIF version

 Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul10add.4 𝐸 = (𝑀 · 𝐴)
decmul10add.5 𝐹 = (𝑀 · 𝐵)
Assertion
Ref Expression
decmul10add (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)

StepHypRef Expression
1 dfdec10 9178 . . 3 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
21oveq2i 5778 . 2 (𝑀 · 𝐴𝐵) = (𝑀 · ((10 · 𝐴) + 𝐵))
3 decmul10add.3 . . . 4 𝑀 ∈ ℕ0
43nn0cni 8982 . . 3 𝑀 ∈ ℂ
5 10nn0 9192 . . . . 5 10 ∈ ℕ0
6 decmul10add.1 . . . . 5 𝐴 ∈ ℕ0
75, 6nn0mulcli 9008 . . . 4 (10 · 𝐴) ∈ ℕ0
87nn0cni 8982 . . 3 (10 · 𝐴) ∈ ℂ
9 decmul10add.2 . . . 4 𝐵 ∈ ℕ0
109nn0cni 8982 . . 3 𝐵 ∈ ℂ
114, 8, 10adddii 7769 . 2 (𝑀 · ((10 · 𝐴) + 𝐵)) = ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵))
125nn0cni 8982 . . . . 5 10 ∈ ℂ
136nn0cni 8982 . . . . 5 𝐴 ∈ ℂ
144, 12, 13mul12i 7901 . . . 4 (𝑀 · (10 · 𝐴)) = (10 · (𝑀 · 𝐴))
153, 6nn0mulcli 9008 . . . . 5 (𝑀 · 𝐴) ∈ ℕ0
1615dec0u 9195 . . . 4 (10 · (𝑀 · 𝐴)) = (𝑀 · 𝐴)0
17 decmul10add.4 . . . . . 6 𝐸 = (𝑀 · 𝐴)
1817eqcomi 2141 . . . . 5 (𝑀 · 𝐴) = 𝐸
1918deceq1i 9181 . . . 4 (𝑀 · 𝐴)0 = 𝐸0
2014, 16, 193eqtri 2162 . . 3 (𝑀 · (10 · 𝐴)) = 𝐸0
21 decmul10add.5 . . . 4 𝐹 = (𝑀 · 𝐵)
2221eqcomi 2141 . . 3 (𝑀 · 𝐵) = 𝐹
2320, 22oveq12i 5779 . 2 ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵)) = (𝐸0 + 𝐹)
242, 11, 233eqtri 2162 1 (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
 Colors of variables: wff set class Syntax hints:   = wceq 1331   ∈ wcel 1480  (class class class)co 5767  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618  ℕ0cn0 8970  ;cdc 9175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sub 7928  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-5 8775  df-6 8776  df-7 8777  df-8 8778  df-9 8779  df-n0 8971  df-dec 9176 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator