ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul10add GIF version

Theorem decmul10add 8935
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul10add.1 𝐴 ∈ ℕ0
decmul10add.2 𝐵 ∈ ℕ0
decmul10add.3 𝑀 ∈ ℕ0
decmul10add.4 𝐸 = (𝑀 · 𝐴)
decmul10add.5 𝐹 = (𝑀 · 𝐵)
Assertion
Ref Expression
decmul10add (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)

Proof of Theorem decmul10add
StepHypRef Expression
1 dfdec10 8870 . . 3 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
21oveq2i 5655 . 2 (𝑀 · 𝐴𝐵) = (𝑀 · ((10 · 𝐴) + 𝐵))
3 decmul10add.3 . . . 4 𝑀 ∈ ℕ0
43nn0cni 8675 . . 3 𝑀 ∈ ℂ
5 10nn0 8884 . . . . 5 10 ∈ ℕ0
6 decmul10add.1 . . . . 5 𝐴 ∈ ℕ0
75, 6nn0mulcli 8701 . . . 4 (10 · 𝐴) ∈ ℕ0
87nn0cni 8675 . . 3 (10 · 𝐴) ∈ ℂ
9 decmul10add.2 . . . 4 𝐵 ∈ ℕ0
109nn0cni 8675 . . 3 𝐵 ∈ ℂ
114, 8, 10adddii 7488 . 2 (𝑀 · ((10 · 𝐴) + 𝐵)) = ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵))
125nn0cni 8675 . . . . 5 10 ∈ ℂ
136nn0cni 8675 . . . . 5 𝐴 ∈ ℂ
144, 12, 13mul12i 7618 . . . 4 (𝑀 · (10 · 𝐴)) = (10 · (𝑀 · 𝐴))
153, 6nn0mulcli 8701 . . . . 5 (𝑀 · 𝐴) ∈ ℕ0
1615dec0u 8887 . . . 4 (10 · (𝑀 · 𝐴)) = (𝑀 · 𝐴)0
17 decmul10add.4 . . . . . 6 𝐸 = (𝑀 · 𝐴)
1817eqcomi 2092 . . . . 5 (𝑀 · 𝐴) = 𝐸
1918deceq1i 8873 . . . 4 (𝑀 · 𝐴)0 = 𝐸0
2014, 16, 193eqtri 2112 . . 3 (𝑀 · (10 · 𝐴)) = 𝐸0
21 decmul10add.5 . . . 4 𝐹 = (𝑀 · 𝐵)
2221eqcomi 2092 . . 3 (𝑀 · 𝐵) = 𝐹
2320, 22oveq12i 5656 . 2 ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵)) = (𝐸0 + 𝐹)
242, 11, 233eqtri 2112 1 (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
Colors of variables: wff set class
Syntax hints:   = wceq 1289  wcel 1438  (class class class)co 5644  0cc0 7340  1c1 7341   + caddc 7343   · cmul 7345  0cn0 8663  cdc 8867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-setind 4351  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-addcom 7435  ax-mulcom 7436  ax-addass 7437  ax-mulass 7438  ax-distr 7439  ax-i2m1 7440  ax-1rid 7442  ax-0id 7443  ax-rnegex 7444  ax-cnre 7446
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-br 3844  df-opab 3898  df-id 4118  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-iota 4975  df-fun 5012  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-sub 7645  df-inn 8413  df-2 8471  df-3 8472  df-4 8473  df-5 8474  df-6 8475  df-7 8476  df-8 8477  df-9 8478  df-n0 8664  df-dec 8868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator