ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul10add GIF version

Theorem decmul10add 9614
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul10add.1 𝐴 ∈ ℕ0
decmul10add.2 𝐵 ∈ ℕ0
decmul10add.3 𝑀 ∈ ℕ0
decmul10add.4 𝐸 = (𝑀 · 𝐴)
decmul10add.5 𝐹 = (𝑀 · 𝐵)
Assertion
Ref Expression
decmul10add (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)

Proof of Theorem decmul10add
StepHypRef Expression
1 dfdec10 9549 . . 3 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
21oveq2i 5985 . 2 (𝑀 · 𝐴𝐵) = (𝑀 · ((10 · 𝐴) + 𝐵))
3 decmul10add.3 . . . 4 𝑀 ∈ ℕ0
43nn0cni 9349 . . 3 𝑀 ∈ ℂ
5 10nn0 9563 . . . . 5 10 ∈ ℕ0
6 decmul10add.1 . . . . 5 𝐴 ∈ ℕ0
75, 6nn0mulcli 9375 . . . 4 (10 · 𝐴) ∈ ℕ0
87nn0cni 9349 . . 3 (10 · 𝐴) ∈ ℂ
9 decmul10add.2 . . . 4 𝐵 ∈ ℕ0
109nn0cni 9349 . . 3 𝐵 ∈ ℂ
114, 8, 10adddii 8124 . 2 (𝑀 · ((10 · 𝐴) + 𝐵)) = ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵))
125nn0cni 9349 . . . . 5 10 ∈ ℂ
136nn0cni 9349 . . . . 5 𝐴 ∈ ℂ
144, 12, 13mul12i 8260 . . . 4 (𝑀 · (10 · 𝐴)) = (10 · (𝑀 · 𝐴))
153, 6nn0mulcli 9375 . . . . 5 (𝑀 · 𝐴) ∈ ℕ0
1615dec0u 9566 . . . 4 (10 · (𝑀 · 𝐴)) = (𝑀 · 𝐴)0
17 decmul10add.4 . . . . . 6 𝐸 = (𝑀 · 𝐴)
1817eqcomi 2213 . . . . 5 (𝑀 · 𝐴) = 𝐸
1918deceq1i 9552 . . . 4 (𝑀 · 𝐴)0 = 𝐸0
2014, 16, 193eqtri 2234 . . 3 (𝑀 · (10 · 𝐴)) = 𝐸0
21 decmul10add.5 . . . 4 𝐹 = (𝑀 · 𝐵)
2221eqcomi 2213 . . 3 (𝑀 · 𝐵) = 𝐹
2320, 22oveq12i 5986 . 2 ((𝑀 · (10 · 𝐴)) + (𝑀 · 𝐵)) = (𝐸0 + 𝐹)
242, 11, 233eqtri 2234 1 (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  0cn0 9337  cdc 9546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator