Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decmul10add | GIF version |
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul10add.1 | ⊢ 𝐴 ∈ ℕ0 |
decmul10add.2 | ⊢ 𝐵 ∈ ℕ0 |
decmul10add.3 | ⊢ 𝑀 ∈ ℕ0 |
decmul10add.4 | ⊢ 𝐸 = (𝑀 · 𝐴) |
decmul10add.5 | ⊢ 𝐹 = (𝑀 · 𝐵) |
Ref | Expression |
---|---|
decmul10add | ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 9346 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 1 | oveq2i 5864 | . 2 ⊢ (𝑀 · ;𝐴𝐵) = (𝑀 · ((;10 · 𝐴) + 𝐵)) |
3 | decmul10add.3 | . . . 4 ⊢ 𝑀 ∈ ℕ0 | |
4 | 3 | nn0cni 9147 | . . 3 ⊢ 𝑀 ∈ ℂ |
5 | 10nn0 9360 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
6 | decmul10add.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
7 | 5, 6 | nn0mulcli 9173 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
8 | 7 | nn0cni 9147 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
9 | decmul10add.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
10 | 9 | nn0cni 9147 | . . 3 ⊢ 𝐵 ∈ ℂ |
11 | 4, 8, 10 | adddii 7930 | . 2 ⊢ (𝑀 · ((;10 · 𝐴) + 𝐵)) = ((𝑀 · (;10 · 𝐴)) + (𝑀 · 𝐵)) |
12 | 5 | nn0cni 9147 | . . . . 5 ⊢ ;10 ∈ ℂ |
13 | 6 | nn0cni 9147 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
14 | 4, 12, 13 | mul12i 8065 | . . . 4 ⊢ (𝑀 · (;10 · 𝐴)) = (;10 · (𝑀 · 𝐴)) |
15 | 3, 6 | nn0mulcli 9173 | . . . . 5 ⊢ (𝑀 · 𝐴) ∈ ℕ0 |
16 | 15 | dec0u 9363 | . . . 4 ⊢ (;10 · (𝑀 · 𝐴)) = ;(𝑀 · 𝐴)0 |
17 | decmul10add.4 | . . . . . 6 ⊢ 𝐸 = (𝑀 · 𝐴) | |
18 | 17 | eqcomi 2174 | . . . . 5 ⊢ (𝑀 · 𝐴) = 𝐸 |
19 | 18 | deceq1i 9349 | . . . 4 ⊢ ;(𝑀 · 𝐴)0 = ;𝐸0 |
20 | 14, 16, 19 | 3eqtri 2195 | . . 3 ⊢ (𝑀 · (;10 · 𝐴)) = ;𝐸0 |
21 | decmul10add.5 | . . . 4 ⊢ 𝐹 = (𝑀 · 𝐵) | |
22 | 21 | eqcomi 2174 | . . 3 ⊢ (𝑀 · 𝐵) = 𝐹 |
23 | 20, 22 | oveq12i 5865 | . 2 ⊢ ((𝑀 · (;10 · 𝐴)) + (𝑀 · 𝐵)) = (;𝐸0 + 𝐹) |
24 | 2, 11, 23 | 3eqtri 2195 | 1 ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ℕ0cn0 9135 ;cdc 9343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-dec 9344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |