![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabid | GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
opabid | ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . 3 ⊢ 𝑥 ∈ V | |
2 | vex 2742 | . . 3 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opex 4231 | . 2 ⊢ ⟨𝑥, 𝑦⟩ ∈ V |
4 | copsexg 4246 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) | |
5 | 4 | bicomd 141 | . 2 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)) |
6 | df-opab 4067 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
7 | 3, 5, 6 | elab2 2887 | 1 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⟨cop 3597 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 |
This theorem is referenced by: opelopabsb 4262 ssopab2b 4278 dmopab 4840 rnopab 4876 funopab 5253 funco 5258 fvmptss2 5593 f1ompt 5669 ovid 5993 enssdom 6764 |
Copyright terms: Public domain | W3C validator |