Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabid | GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
opabid | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2715 | . . 3 ⊢ 𝑥 ∈ V | |
2 | vex 2715 | . . 3 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opex 4189 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V |
4 | copsexg 4204 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
5 | 4 | bicomd 140 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
6 | df-opab 4026 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
7 | 3, 5, 6 | elab2 2860 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ∃wex 1472 ∈ wcel 2128 〈cop 3563 {copab 4024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 |
This theorem is referenced by: opelopabsb 4220 ssopab2b 4236 dmopab 4796 rnopab 4832 funopab 5204 funco 5209 fvmptss2 5542 f1ompt 5617 ovid 5934 enssdom 6704 |
Copyright terms: Public domain | W3C validator |