ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi GIF version

Theorem relopabi 4754
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabi Rel 𝐴

Proof of Theorem relopabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 4067 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2198 . . 3 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 vex 2742 . . . . . . . 8 𝑥 ∈ V
5 vex 2742 . . . . . . . 8 𝑦 ∈ V
64, 5opelvv 4678 . . . . . . 7 𝑥, 𝑦⟩ ∈ (V × V)
7 eleq1 2240 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V)))
86, 7mpbiri 168 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V))
98adantr 276 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
109exlimivv 1896 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
1110abssi 3232 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V)
123, 11eqsstri 3189 . 2 𝐴 ⊆ (V × V)
13 df-rel 4635 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
1412, 13mpbir 146 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1492  wcel 2148  {cab 2163  Vcvv 2739  wss 3131  cop 3597  {copab 4065   × cxp 4626  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by:  relopab  4755  mptrel  4757  reli  4758  rele  4759  relcnv  5008  cotr  5012  relco  5129  reloprab  5925  reldmoprab  5962  eqer  6569  ecopover  6635  ecopoverg  6638  relen  6746  reldom  6747  enq0er  7436  aprcl  8605  aptap  8609  climrel  11290  brstruct  12473
  Copyright terms: Public domain W3C validator