| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relopabi | GIF version | ||
| Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| relopabi.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabi | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | df-opab 4106 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 3 | 1, 2 | eqtri 2226 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 4 | vex 2775 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | vex 2775 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | opelvv 4725 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ (V × V) |
| 7 | eleq1 2268 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (V × V) ↔ 〈𝑥, 𝑦〉 ∈ (V × V))) | |
| 8 | 6, 7 | mpbiri 168 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ (V × V)) |
| 9 | 8 | adantr 276 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
| 10 | 9 | exlimivv 1920 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
| 11 | 10 | abssi 3268 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ (V × V) |
| 12 | 3, 11 | eqsstri 3225 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 13 | df-rel 4682 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 14 | 12, 13 | mpbir 146 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 {cab 2191 Vcvv 2772 ⊆ wss 3166 〈cop 3636 {copab 4104 × cxp 4673 Rel wrel 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: relopab 4804 mptrel 4806 reli 4807 rele 4808 relcnv 5060 cotr 5064 relco 5181 reloprab 5993 reldmoprab 6030 eqer 6652 ecopover 6720 ecopoverg 6723 relen 6831 reldom 6832 enq0er 7548 aprcl 8719 aptap 8723 climrel 11591 brstruct 12841 |
| Copyright terms: Public domain | W3C validator |