| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relopabi | GIF version | ||
| Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| relopabi.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabi | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | df-opab 4105 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 3 | 1, 2 | eqtri 2225 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 4 | vex 2774 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | vex 2774 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | opelvv 4724 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ (V × V) |
| 7 | eleq1 2267 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (V × V) ↔ 〈𝑥, 𝑦〉 ∈ (V × V))) | |
| 8 | 6, 7 | mpbiri 168 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ (V × V)) |
| 9 | 8 | adantr 276 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
| 10 | 9 | exlimivv 1919 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
| 11 | 10 | abssi 3267 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ (V × V) |
| 12 | 3, 11 | eqsstri 3224 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 13 | df-rel 4681 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 14 | 12, 13 | mpbir 146 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 {cab 2190 Vcvv 2771 ⊆ wss 3165 〈cop 3635 {copab 4103 × cxp 4672 Rel wrel 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4680 df-rel 4681 |
| This theorem is referenced by: relopab 4803 mptrel 4805 reli 4806 rele 4807 relcnv 5059 cotr 5063 relco 5180 reloprab 5992 reldmoprab 6029 eqer 6651 ecopover 6719 ecopoverg 6722 relen 6830 reldom 6831 enq0er 7547 aprcl 8718 aptap 8722 climrel 11562 brstruct 12812 |
| Copyright terms: Public domain | W3C validator |