Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relopabi | GIF version |
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopabi.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabi | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | df-opab 4022 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
3 | 1, 2 | eqtri 2175 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
4 | vex 2712 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 2712 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | opelvv 4629 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ (V × V) |
7 | eleq1 2217 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (V × V) ↔ 〈𝑥, 𝑦〉 ∈ (V × V))) | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ (V × V)) |
9 | 8 | adantr 274 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
10 | 9 | exlimivv 1873 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
11 | 10 | abssi 3199 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ (V × V) |
12 | 3, 11 | eqsstri 3156 | . 2 ⊢ 𝐴 ⊆ (V × V) |
13 | df-rel 4586 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
14 | 12, 13 | mpbir 145 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1332 ∃wex 1469 ∈ wcel 2125 {cab 2140 Vcvv 2709 ⊆ wss 3098 〈cop 3559 {copab 4020 × cxp 4577 Rel wrel 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 df-rel 4586 |
This theorem is referenced by: relopab 4706 mptrel 4707 reli 4708 rele 4709 relcnv 4957 cotr 4960 relco 5077 reloprab 5859 reldmoprab 5896 eqer 6501 ecopover 6567 ecopoverg 6570 relen 6678 reldom 6679 enq0er 7334 aprcl 8500 climrel 11154 brstruct 12146 |
Copyright terms: Public domain | W3C validator |