ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi GIF version

Theorem relopabi 4730
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabi Rel 𝐴

Proof of Theorem relopabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 4044 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2186 . . 3 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 vex 2729 . . . . . . . 8 𝑥 ∈ V
5 vex 2729 . . . . . . . 8 𝑦 ∈ V
64, 5opelvv 4654 . . . . . . 7 𝑥, 𝑦⟩ ∈ (V × V)
7 eleq1 2229 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V)))
86, 7mpbiri 167 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V))
98adantr 274 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
109exlimivv 1884 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
1110abssi 3217 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V)
123, 11eqsstri 3174 . 2 𝐴 ⊆ (V × V)
13 df-rel 4611 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
1412, 13mpbir 145 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  {cab 2151  Vcvv 2726  wss 3116  cop 3579  {copab 4042   × cxp 4602  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  relopab  4731  mptrel  4732  reli  4733  rele  4734  relcnv  4982  cotr  4985  relco  5102  reloprab  5890  reldmoprab  5927  eqer  6533  ecopover  6599  ecopoverg  6602  relen  6710  reldom  6711  enq0er  7376  aprcl  8544  climrel  11221  brstruct  12403
  Copyright terms: Public domain W3C validator