ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi GIF version

Theorem relopabi 4521
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabi Rel 𝐴

Proof of Theorem relopabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 3866 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2103 . . 3 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 vex 2615 . . . . . . . 8 𝑥 ∈ V
5 vex 2615 . . . . . . . 8 𝑦 ∈ V
64, 5opelvv 4446 . . . . . . 7 𝑥, 𝑦⟩ ∈ (V × V)
7 eleq1 2145 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V)))
86, 7mpbiri 166 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V))
98adantr 270 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
109exlimivv 1819 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
1110abssi 3080 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V)
123, 11eqsstri 3040 . 2 𝐴 ⊆ (V × V)
13 df-rel 4408 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
1412, 13mpbir 144 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1285  wex 1422  wcel 1434  {cab 2069  Vcvv 2612  wss 2984  cop 3425  {copab 3864   × cxp 4399  Rel wrel 4406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-opab 3866  df-xp 4407  df-rel 4408
This theorem is referenced by:  relopab  4522  reli  4523  rele  4524  relcnv  4765  cotr  4768  relco  4883  reloprab  5632  reldmoprab  5668  eqer  6254  ecopover  6320  ecopoverg  6323  relen  6391  reldom  6392  enq0er  6897  climrel  10493
  Copyright terms: Public domain W3C validator