Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relopabi | GIF version |
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopabi.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabi | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | df-opab 4051 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
3 | 1, 2 | eqtri 2191 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
4 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 2733 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | opelvv 4661 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ (V × V) |
7 | eleq1 2233 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (V × V) ↔ 〈𝑥, 𝑦〉 ∈ (V × V))) | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ (V × V)) |
9 | 8 | adantr 274 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
10 | 9 | exlimivv 1889 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
11 | 10 | abssi 3222 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ (V × V) |
12 | 3, 11 | eqsstri 3179 | . 2 ⊢ 𝐴 ⊆ (V × V) |
13 | df-rel 4618 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
14 | 12, 13 | mpbir 145 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {cab 2156 Vcvv 2730 ⊆ wss 3121 〈cop 3586 {copab 4049 × cxp 4609 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: relopab 4738 mptrel 4739 reli 4740 rele 4741 relcnv 4989 cotr 4992 relco 5109 reloprab 5901 reldmoprab 5938 eqer 6545 ecopover 6611 ecopoverg 6614 relen 6722 reldom 6723 enq0er 7397 aprcl 8565 climrel 11243 brstruct 12425 |
Copyright terms: Public domain | W3C validator |