| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniop | GIF version | ||
| Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opthw.1 | ⊢ 𝐴 ∈ V |
| opthw.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniop | ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 3855 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | unieqi 3897 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 = ∪ {{𝐴}, {𝐴, 𝐵}} |
| 5 | 1 | snex 4268 | . . 3 ⊢ {𝐴} ∈ V |
| 6 | prexg 4294 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 7 | 1, 2, 6 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 8 | 5, 7 | unipr 3901 | . 2 ⊢ ∪ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵}) |
| 9 | snsspr1 3815 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 10 | ssequn1 3374 | . . 3 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
| 11 | 9, 10 | mpbi 145 | . 2 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
| 12 | 4, 8, 11 | 3eqtri 2254 | 1 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 {csn 3666 {cpr 3667 〈cop 3669 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 |
| This theorem is referenced by: uniopel 4342 elvvuni 4782 dmrnssfld 4986 |
| Copyright terms: Public domain | W3C validator |