ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniop GIF version

Theorem uniop 4299
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniop 𝐴, 𝐵⟩ = {𝐴, 𝐵}

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2dfop 3817 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43unieqi 3859 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
51snex 4228 . . 3 {𝐴} ∈ V
6 prexg 4254 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
85, 7unipr 3863 . 2 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵})
9 snsspr1 3780 . . 3 {𝐴} ⊆ {𝐴, 𝐵}
10 ssequn1 3342 . . 3 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
119, 10mpbi 145 . 2 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
124, 8, 113eqtri 2229 1 𝐴, 𝐵⟩ = {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  Vcvv 2771  cun 3163  wss 3165  {csn 3632  {cpr 3633  cop 3635   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850
This theorem is referenced by:  uniopel  4300  elvvuni  4738  dmrnssfld  4940
  Copyright terms: Public domain W3C validator