Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniop | GIF version |
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniop | ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 3757 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | unieqi 3799 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 = ∪ {{𝐴}, {𝐴, 𝐵}} |
5 | 1 | snex 4164 | . . 3 ⊢ {𝐴} ∈ V |
6 | prexg 4189 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
7 | 1, 2, 6 | mp2an 423 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
8 | 5, 7 | unipr 3803 | . 2 ⊢ ∪ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵}) |
9 | snsspr1 3721 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
10 | ssequn1 3292 | . . 3 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
11 | 9, 10 | mpbi 144 | . 2 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
12 | 4, 8, 11 | 3eqtri 2190 | 1 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 {csn 3576 {cpr 3577 〈cop 3579 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 |
This theorem is referenced by: uniopel 4234 elvvuni 4668 dmrnssfld 4867 |
Copyright terms: Public domain | W3C validator |