| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stbg | GIF version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.) |
| Ref | Expression |
|---|---|
| op1stbg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 3817 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 2 | 1 | inteqd 3890 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}}) |
| 3 | snexg 4229 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 4 | prexg 4256 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | |
| 5 | intprg 3918 | . . . . . 6 ⊢ (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})) | |
| 6 | 3, 4, 5 | syl2an2r 595 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})) |
| 7 | snsspr1 3781 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 8 | df-ss 3179 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
| 9 | 7, 8 | mpbi 145 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
| 10 | 6, 9 | eqtrdi 2254 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴}) |
| 11 | 2, 10 | eqtrd 2238 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 〈𝐴, 𝐵〉 = {𝐴}) |
| 12 | 11 | inteqd 3890 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴}) |
| 13 | intsng 3919 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) | |
| 14 | 13 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴} = 𝐴) |
| 15 | 12, 14 | eqtrd 2238 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 ⊆ wss 3166 {csn 3633 {cpr 3634 〈cop 3636 ∩ cint 3885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-int 3886 |
| This theorem is referenced by: elxp5 5172 fundmen 6900 |
| Copyright terms: Public domain | W3C validator |