ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stbg GIF version

Theorem op1stbg 4570
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
op1stbg ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)

Proof of Theorem op1stbg
StepHypRef Expression
1 dfopg 3855 . . . . 5 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21inteqd 3928 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
3 snexg 4268 . . . . . 6 (𝐴𝑉 → {𝐴} ∈ V)
4 prexg 4295 . . . . . 6 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
5 intprg 3956 . . . . . 6 (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
63, 4, 5syl2an2r 597 . . . . 5 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
7 snsspr1 3816 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
8 df-ss 3210 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
97, 8mpbi 145 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
106, 9eqtrdi 2278 . . . 4 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = {𝐴})
112, 10eqtrd 2262 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
1211inteqd 3928 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
13 intsng 3957 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
1413adantr 276 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} = 𝐴)
1512, 14eqtrd 2262 1 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  {csn 3666  {cpr 3667  cop 3669   cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-int 3924
This theorem is referenced by:  elxp5  5217  fundmen  6959
  Copyright terms: Public domain W3C validator