ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stbg GIF version

Theorem op1stbg 4395
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
op1stbg ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)

Proof of Theorem op1stbg
StepHypRef Expression
1 dfopg 3698 . . . . 5 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21inteqd 3771 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
3 snexg 4103 . . . . . 6 (𝐴𝑉 → {𝐴} ∈ V)
4 prexg 4128 . . . . . 6 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
5 intprg 3799 . . . . . 6 (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
63, 4, 5syl2an2r 584 . . . . 5 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
7 snsspr1 3663 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
8 df-ss 3079 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
97, 8mpbi 144 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
106, 9syl6eq 2186 . . . 4 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = {𝐴})
112, 10eqtrd 2170 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
1211inteqd 3771 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
13 intsng 3800 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
1413adantr 274 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} = 𝐴)
1512, 14eqtrd 2170 1 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2681  cin 3065  wss 3066  {csn 3522  {cpr 3523  cop 3525   cint 3766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-int 3767
This theorem is referenced by:  elxp5  5022  fundmen  6693
  Copyright terms: Public domain W3C validator