ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stbg GIF version

Theorem op1stbg 4439
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
op1stbg ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)

Proof of Theorem op1stbg
StepHypRef Expression
1 dfopg 3739 . . . . 5 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21inteqd 3812 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
3 snexg 4145 . . . . . 6 (𝐴𝑉 → {𝐴} ∈ V)
4 prexg 4171 . . . . . 6 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
5 intprg 3840 . . . . . 6 (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
63, 4, 5syl2an2r 585 . . . . 5 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
7 snsspr1 3704 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
8 df-ss 3115 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
97, 8mpbi 144 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
106, 9eqtrdi 2206 . . . 4 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = {𝐴})
112, 10eqtrd 2190 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
1211inteqd 3812 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
13 intsng 3841 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
1413adantr 274 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} = 𝐴)
1512, 14eqtrd 2190 1 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  Vcvv 2712  cin 3101  wss 3102  {csn 3560  {cpr 3561  cop 3563   cint 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-int 3808
This theorem is referenced by:  elxp5  5074  fundmen  6751
  Copyright terms: Public domain W3C validator