![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opexg | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
opexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 3803 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
2 | elex 2771 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | snexg 4214 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
6 | elex 2771 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
7 | prexg 4241 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
8 | 2, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
9 | prexg 4241 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} ∈ V) | |
10 | 5, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {{𝐴}, {𝐴, 𝐵}} ∈ V) |
11 | 1, 10 | eqeltrd 2270 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 {csn 3619 {cpr 3620 〈cop 3622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: opex 4259 otexg 4260 opeliunxp 4715 opbrop 4739 relsnopg 4764 opswapg 5153 elxp4 5154 elxp5 5155 resfunexg 5780 fliftel 5837 fliftel1 5838 oprabid 5951 ovexg 5953 eloprabga 6006 op1st 6201 op2nd 6202 ot1stg 6207 ot2ndg 6208 ot3rdgg 6209 elxp6 6224 mpofvex 6260 algrflem 6284 algrflemg 6285 mpoxopoveq 6295 brtposg 6309 tfr0dm 6377 tfrlemisucaccv 6380 tfrlemibxssdm 6382 tfrlemibfn 6383 tfrlemi14d 6388 tfr1onlemsucaccv 6396 tfr1onlembxssdm 6398 tfr1onlembfn 6399 tfr1onlemres 6404 tfrcllemsucaccv 6409 tfrcllembxssdm 6411 tfrcllembfn 6412 tfrcllemres 6417 fnfi 6997 djulclb 7116 inl11 7126 1stinl 7135 2ndinl 7136 1stinr 7137 2ndinr 7138 mulpipq2 7433 enq0breq 7498 addvalex 7906 peano2nnnn 7915 axcnre 7943 frec2uzrdg 10483 frecuzrdg0 10487 frecuzrdgg 10490 frecuzrdg0t 10496 zfz1isolem1 10914 eucalgval2 12194 crth 12365 phimullem 12366 ennnfonelemp1 12566 setsvala 12652 setsex 12653 setsfun 12656 setsfun0 12657 setsresg 12659 setscom 12661 strslfv 12666 setsslid 12672 strle1g 12727 1strbas 12738 2strbasg 12740 2stropg 12741 2strbas1g 12743 2strop1g 12744 rngbaseg 12756 rngplusgg 12757 rngmulrg 12758 srngbased 12767 srngplusgd 12768 srngmulrd 12769 srnginvld 12770 lmodbased 12785 lmodplusgd 12786 lmodscad 12787 lmodvscad 12788 ipsbased 12797 ipsaddgd 12798 ipsmulrd 12799 ipsscad 12800 ipsvscad 12801 ipsipd 12802 topgrpbasd 12817 topgrpplusgd 12818 topgrptsetd 12819 prdsex 12883 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfnlemg 12900 imasaddvallemg 12901 xpsfval 12934 xpsval 12938 intopsn 12953 mgm1 12956 sgrp1 12997 mnd1 13030 mnd1id 13031 grp1 13181 grp1inv 13182 ring1 13558 psrval 14163 fnpsr 14164 psrbasg 14170 psrplusgg 14173 txlm 14458 |
Copyright terms: Public domain | W3C validator |