![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opexg | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
opexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 3777 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) | |
2 | elex 2749 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | snexg 4185 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
6 | elex 2749 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
7 | prexg 4212 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
8 | 2, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
9 | prexg 4212 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} ∈ V) | |
10 | 5, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {{𝐴}, {𝐴, 𝐵}} ∈ V) |
11 | 1, 10 | eqeltrd 2254 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2738 {csn 3593 {cpr 3594 ⟨cop 3596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 |
This theorem is referenced by: opex 4230 otexg 4231 opeliunxp 4682 opbrop 4706 relsnopg 4731 opswapg 5116 elxp4 5117 elxp5 5118 resfunexg 5738 fliftel 5794 fliftel1 5795 oprabid 5907 ovexg 5909 eloprabga 5962 op1st 6147 op2nd 6148 ot1stg 6153 ot2ndg 6154 ot3rdgg 6155 elxp6 6170 mpofvex 6204 algrflem 6230 algrflemg 6231 mpoxopoveq 6241 brtposg 6255 tfr0dm 6323 tfrlemisucaccv 6326 tfrlemibxssdm 6328 tfrlemibfn 6329 tfrlemi14d 6334 tfr1onlemsucaccv 6342 tfr1onlembxssdm 6344 tfr1onlembfn 6345 tfr1onlemres 6350 tfrcllemsucaccv 6355 tfrcllembxssdm 6357 tfrcllembfn 6358 tfrcllemres 6363 fnfi 6936 djulclb 7054 inl11 7064 1stinl 7073 2ndinl 7074 1stinr 7075 2ndinr 7076 mulpipq2 7370 enq0breq 7435 addvalex 7843 peano2nnnn 7852 axcnre 7880 frec2uzrdg 10409 frecuzrdg0 10413 frecuzrdgg 10416 frecuzrdg0t 10422 zfz1isolem1 10820 eucalgval2 12053 crth 12224 phimullem 12225 ennnfonelemp1 12407 setsvala 12493 setsex 12494 setsfun 12497 setsfun0 12498 setsresg 12500 setscom 12502 strslfv 12507 setsslid 12513 strle1g 12565 1strbas 12576 2strbasg 12578 2stropg 12579 2strbas1g 12581 2strop1g 12582 rngbaseg 12594 rngplusgg 12595 rngmulrg 12596 srngbased 12605 srngplusgd 12606 srngmulrd 12607 srnginvld 12608 lmodbased 12623 lmodplusgd 12624 lmodscad 12625 lmodvscad 12626 ipsbased 12635 ipsaddgd 12636 ipsmulrd 12637 ipsscad 12638 ipsvscad 12639 ipsipd 12640 topgrpbasd 12652 topgrpplusgd 12653 topgrptsetd 12654 prdsex 12718 imasex 12726 imasival 12727 imasbas 12728 imasplusg 12729 imasmulr 12730 imasaddfnlemg 12735 imasaddvallemg 12736 xpsfval 12767 xpsval 12771 intopsn 12786 mgm1 12789 sgrp1 12816 mnd1 12847 mnd1id 12848 grp1 12976 grp1inv 12977 ring1 13236 txlm 13782 |
Copyright terms: Public domain | W3C validator |