Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opexg | GIF version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
opexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 3756 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
2 | elex 2737 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | snexg 4163 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
5 | 4 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
6 | elex 2737 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
7 | prexg 4189 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
8 | 2, 6, 7 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
9 | prexg 4189 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} ∈ V) | |
10 | 5, 8, 9 | syl2anc 409 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {{𝐴}, {𝐴, 𝐵}} ∈ V) |
11 | 1, 10 | eqeltrd 2243 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 {csn 3576 {cpr 3577 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opex 4207 otexg 4208 opeliunxp 4659 opbrop 4683 relsnopg 4708 opswapg 5090 elxp4 5091 elxp5 5092 resfunexg 5706 fliftel 5761 fliftel1 5762 oprabid 5874 ovexg 5876 eloprabga 5929 op1st 6114 op2nd 6115 ot1stg 6120 ot2ndg 6121 ot3rdgg 6122 elxp6 6137 mpofvex 6171 algrflem 6197 algrflemg 6198 mpoxopoveq 6208 brtposg 6222 tfr0dm 6290 tfrlemisucaccv 6293 tfrlemibxssdm 6295 tfrlemibfn 6296 tfrlemi14d 6301 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfr1onlemres 6317 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllembfn 6325 tfrcllemres 6330 fnfi 6902 djulclb 7020 inl11 7030 1stinl 7039 2ndinl 7040 1stinr 7041 2ndinr 7042 mulpipq2 7312 enq0breq 7377 addvalex 7785 peano2nnnn 7794 axcnre 7822 frec2uzrdg 10344 frecuzrdg0 10348 frecuzrdgg 10351 frecuzrdg0t 10357 zfz1isolem1 10753 eucalgval2 11985 crth 12156 phimullem 12157 ennnfonelemp1 12339 setsvala 12425 setsex 12426 setsfun 12429 setsfun0 12430 setsresg 12432 setscom 12434 strslfv 12438 setsslid 12444 strle1g 12485 1strbas 12494 2strbasg 12496 2stropg 12497 2strbas1g 12499 2strop1g 12500 rngbaseg 12511 rngplusgg 12512 rngmulrg 12513 srngbased 12518 srngplusgd 12519 srngmulrd 12520 srnginvld 12521 lmodbased 12529 lmodplusgd 12530 lmodscad 12531 lmodvscad 12532 ipsbased 12537 ipsaddgd 12538 ipsmulrd 12539 ipsscad 12540 ipsvscad 12541 ipsipd 12542 topgrpbasd 12547 topgrpplusgd 12548 topgrptsetd 12549 intopsn 12598 mgm1 12601 txlm 12919 |
Copyright terms: Public domain | W3C validator |