| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opexg | GIF version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| Ref | Expression |
|---|---|
| opexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 3806 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 2 | elex 2774 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | snexg 4217 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴} ∈ V) |
| 6 | elex 2774 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 7 | prexg 4244 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 8 | 2, 6, 7 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| 9 | prexg 4244 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} ∈ V) | |
| 10 | 5, 8, 9 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {{𝐴}, {𝐴, 𝐵}} ∈ V) |
| 11 | 1, 10 | eqeltrd 2273 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 {csn 3622 {cpr 3623 〈cop 3625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: opex 4262 otexg 4263 opeliunxp 4718 opbrop 4742 relsnopg 4767 opswapg 5156 elxp4 5157 elxp5 5158 resfunexg 5783 fliftel 5840 fliftel1 5841 oprabid 5954 ovexg 5956 eloprabga 6009 op1st 6204 op2nd 6205 ot1stg 6210 ot2ndg 6211 ot3rdgg 6212 elxp6 6227 mpofvex 6263 algrflem 6287 algrflemg 6288 mpoxopoveq 6298 brtposg 6312 tfr0dm 6380 tfrlemisucaccv 6383 tfrlemibxssdm 6385 tfrlemibfn 6386 tfrlemi14d 6391 tfr1onlemsucaccv 6399 tfr1onlembxssdm 6401 tfr1onlembfn 6402 tfr1onlemres 6407 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllembfn 6415 tfrcllemres 6420 fnfi 7002 djulclb 7121 inl11 7131 1stinl 7140 2ndinl 7141 1stinr 7142 2ndinr 7143 mulpipq2 7438 enq0breq 7503 addvalex 7911 peano2nnnn 7920 axcnre 7948 frec2uzrdg 10501 frecuzrdg0 10505 frecuzrdgg 10508 frecuzrdg0t 10514 zfz1isolem1 10932 eucalgval2 12221 crth 12392 phimullem 12393 ennnfonelemp1 12623 setsvala 12709 setsex 12710 setsfun 12713 setsfun0 12714 setsresg 12716 setscom 12718 strslfv 12723 setsslid 12729 strle1g 12784 1strbas 12795 2strbasg 12797 2stropg 12798 2strbas1g 12800 2strop1g 12801 rngbaseg 12813 rngplusgg 12814 rngmulrg 12815 srngbased 12824 srngplusgd 12825 srngmulrd 12826 srnginvld 12827 lmodbased 12842 lmodplusgd 12843 lmodscad 12844 lmodvscad 12845 ipsbased 12854 ipsaddgd 12855 ipsmulrd 12856 ipsscad 12857 ipsvscad 12858 ipsipd 12859 topgrpbasd 12874 topgrpplusgd 12875 topgrptsetd 12876 prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfnlemg 12957 imasaddvallemg 12958 xpsfval 12991 xpsval 12995 intopsn 13010 mgm1 13013 sgrp1 13054 mnd1 13087 mnd1id 13088 grp1 13238 grp1inv 13239 ring1 13615 psrval 14220 fnpsr 14221 psrbasg 14227 psrplusgg 14230 txlm 14515 |
| Copyright terms: Public domain | W3C validator |