ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfse2 GIF version

Theorem dfse2 5043
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 4369 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
2 dfrab3 3440 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
3 vex 2766 . . . . . . 7 𝑥 ∈ V
4 iniseg 5042 . . . . . . 7 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥})
53, 4ax-mp 5 . . . . . 6 (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥}
65ineq2i 3362 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
72, 6eqtr4i 2220 . . . 4 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ (𝑅 “ {𝑥}))
87eleq1i 2262 . . 3 ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
98ralbii 2503 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
101, 9bitri 184 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  {crab 2479  Vcvv 2763  cin 3156  {csn 3623   class class class wbr 4034   Se wse 4365  ccnv 4663  cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-se 4369  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  isoselem  5870
  Copyright terms: Public domain W3C validator