| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfse2 | GIF version | ||
| Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| dfse2 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 4388 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 2 | dfrab3 3453 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) | |
| 3 | vex 2776 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | iniseg 5063 | . . . . . . 7 ⊢ (𝑥 ∈ V → (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥} |
| 6 | 5 | ineq2i 3375 | . . . . 5 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) |
| 7 | 2, 6 | eqtr4i 2230 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ (◡𝑅 “ {𝑥})) |
| 8 | 7 | eleq1i 2272 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 9 | 8 | ralbii 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 10 | 1, 9 | bitri 184 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 {crab 2489 Vcvv 2773 ∩ cin 3169 {csn 3638 class class class wbr 4051 Se wse 4384 ◡ccnv 4682 “ cima 4686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-se 4388 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 |
| This theorem is referenced by: isoselem 5902 |
| Copyright terms: Public domain | W3C validator |