![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfse2 | GIF version |
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dfse2 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 4193 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | dfrab3 3299 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) | |
3 | vex 2644 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | iniseg 4847 | . . . . . . 7 ⊢ (𝑥 ∈ V → (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥}) | |
5 | 3, 4 | ax-mp 7 | . . . . . 6 ⊢ (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥} |
6 | 5 | ineq2i 3221 | . . . . 5 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) |
7 | 2, 6 | eqtr4i 2123 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ (◡𝑅 “ {𝑥})) |
8 | 7 | eleq1i 2165 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
9 | 8 | ralbii 2400 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
10 | 1, 9 | bitri 183 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1299 ∈ wcel 1448 {cab 2086 ∀wral 2375 {crab 2379 Vcvv 2641 ∩ cin 3020 {csn 3474 class class class wbr 3875 Se wse 4189 ◡ccnv 4476 “ cima 4480 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-se 4193 df-xp 4483 df-cnv 4485 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 |
This theorem is referenced by: isoselem 5653 |
Copyright terms: Public domain | W3C validator |