ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfse2 GIF version

Theorem dfse2 5100
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 4423 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
2 dfrab3 3480 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
3 vex 2802 . . . . . . 7 𝑥 ∈ V
4 iniseg 5099 . . . . . . 7 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥})
53, 4ax-mp 5 . . . . . 6 (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥}
65ineq2i 3402 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
72, 6eqtr4i 2253 . . . 4 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ (𝑅 “ {𝑥}))
87eleq1i 2295 . . 3 ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
98ralbii 2536 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
101, 9bitri 184 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  {cab 2215  wral 2508  {crab 2512  Vcvv 2799  cin 3196  {csn 3666   class class class wbr 4082   Se wse 4419  ccnv 4717  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-se 4423  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  isoselem  5943
  Copyright terms: Public domain W3C validator