Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6292
 Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6279 . 2 1o = suc ∅
2 suc0 4301 . 2 suc ∅ = {∅}
31, 2eqtri 2136 1 1o = {∅}
 Colors of variables: wff set class Syntax hints:   = wceq 1314  ∅c0 3331  {csn 3495  suc csuc 4255  1oc1o 6272 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-dif 3041  df-un 3043  df-nul 3332  df-suc 4261  df-1o 6279 This theorem is referenced by:  df2o3  6293  df2o2  6294  1n0  6295  el1o  6300  dif1o  6301  ensn1  6656  en1  6659  map1  6672  xp1en  6683  exmidpw  6768  unfiexmid  6772  0ct  6958  exmidfodomrlemr  7022  exmidfodomrlemrALT  7023  fihashen1  10496  ss1oel2o  13023  pw1dom2  13024  pwle2  13027  pwf1oexmid  13028  sbthom  13055
 Copyright terms: Public domain W3C validator