![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df1o2 | GIF version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6420 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 4413 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2198 | 1 ⊢ 1o = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∅c0 3424 {csn 3594 suc csuc 4367 1oc1o 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-un 3135 df-nul 3425 df-suc 4373 df-1o 6420 |
This theorem is referenced by: df2o3 6434 df2o2 6435 1n0 6436 el1o 6441 dif1o 6442 ensn1 6799 en1 6802 map1 6815 xp1en 6826 exmidpw 6911 exmidpweq 6912 pw1fin 6913 pw1dc0el 6914 ss1o0el1o 6915 unfiexmid 6920 0ct 7109 exmidonfinlem 7195 exmidfodomrlemr 7204 exmidfodomrlemrALT 7205 pw1on 7228 pw1dom2 7229 pw1ne1 7231 sucpw1nel3 7235 fihashen1 10782 ss1oel2o 14905 pwle2 14910 pwf1oexmid 14911 sbthom 14936 |
Copyright terms: Public domain | W3C validator |