| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1o2 | GIF version | ||
| Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6474 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 4446 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2217 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∅c0 3450 {csn 3622 suc csuc 4400 1oc1o 6467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-suc 4406 df-1o 6474 |
| This theorem is referenced by: df2o3 6488 df2o2 6489 1n0 6490 el1o 6495 dif1o 6496 ensn1 6855 en1 6858 map1 6871 xp1en 6882 exmidpw 6969 exmidpweq 6970 pw1fin 6971 pw1dc0el 6972 exmidpw2en 6973 ss1o0el1o 6974 unfiexmid 6979 0ct 7173 exmidonfinlem 7260 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 pw1on 7293 pw1dom2 7294 pw1ne1 7296 sucpw1nel3 7300 fihashen1 10891 ss1oel2o 15638 pwle2 15643 pwf1oexmid 15644 sbthom 15670 |
| Copyright terms: Public domain | W3C validator |