ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6484
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6471 . 2 1o = suc ∅
2 suc0 4443 . 2 suc ∅ = {∅}
31, 2eqtri 2214 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  c0 3447  {csn 3619  suc csuc 4397  1oc1o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-nul 3448  df-suc 4403  df-1o 6471
This theorem is referenced by:  df2o3  6485  df2o2  6486  1n0  6487  el1o  6492  dif1o  6493  ensn1  6852  en1  6855  map1  6868  xp1en  6879  exmidpw  6966  exmidpweq  6967  pw1fin  6968  pw1dc0el  6969  exmidpw2en  6970  ss1o0el1o  6971  unfiexmid  6976  0ct  7168  exmidonfinlem  7255  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265  pw1on  7288  pw1dom2  7289  pw1ne1  7291  sucpw1nel3  7295  fihashen1  10873  ss1oel2o  15554  pwle2  15559  pwf1oexmid  15560  sbthom  15586
  Copyright terms: Public domain W3C validator