ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6397
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6384 . 2 1o = suc ∅
2 suc0 4389 . 2 suc ∅ = {∅}
31, 2eqtri 2186 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  c0 3409  {csn 3576  suc csuc 4343  1oc1o 6377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-suc 4349  df-1o 6384
This theorem is referenced by:  df2o3  6398  df2o2  6399  1n0  6400  el1o  6405  dif1o  6406  ensn1  6762  en1  6765  map1  6778  xp1en  6789  exmidpw  6874  exmidpweq  6875  pw1fin  6876  pw1dc0el  6877  ss1o0el1o  6878  unfiexmid  6883  0ct  7072  exmidonfinlem  7149  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  pw1on  7182  pw1dom2  7183  pw1ne1  7185  sucpw1nel3  7189  fihashen1  10712  ss1oel2o  13873  pwle2  13878  pwf1oexmid  13879  sbthom  13905
  Copyright terms: Public domain W3C validator