| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1o2 | GIF version | ||
| Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6509 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 4462 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2227 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∅c0 3461 {csn 3634 suc csuc 4416 1oc1o 6502 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-un 3171 df-nul 3462 df-suc 4422 df-1o 6509 |
| This theorem is referenced by: df2o3 6523 df2o2 6524 1n0 6525 el1o 6530 dif1o 6531 ensn1 6895 en1 6898 map1 6911 xp1en 6925 exmidpw 7012 exmidpweq 7013 pw1fin 7014 pw1dc0el 7015 exmidpw2en 7016 ss1o0el1o 7017 unfiexmid 7022 0ct 7216 exmidonfinlem 7308 exmidfodomrlemr 7317 exmidfodomrlemrALT 7318 pw1on 7345 pw1dom2 7346 pw1ne1 7348 sucpw1nel3 7352 fihashen1 10951 ss1oel2o 16002 pwle2 16009 pwf1oexmid 16010 sbthom 16039 |
| Copyright terms: Public domain | W3C validator |