Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df1o2 | GIF version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6384 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 4389 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2186 | 1 ⊢ 1o = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∅c0 3409 {csn 3576 suc csuc 4343 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-suc 4349 df-1o 6384 |
This theorem is referenced by: df2o3 6398 df2o2 6399 1n0 6400 el1o 6405 dif1o 6406 ensn1 6762 en1 6765 map1 6778 xp1en 6789 exmidpw 6874 exmidpweq 6875 pw1fin 6876 pw1dc0el 6877 ss1o0el1o 6878 unfiexmid 6883 0ct 7072 exmidonfinlem 7149 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 pw1on 7182 pw1dom2 7183 pw1ne1 7185 sucpw1nel3 7189 fihashen1 10712 ss1oel2o 13873 pwle2 13878 pwf1oexmid 13879 sbthom 13905 |
Copyright terms: Public domain | W3C validator |