ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6582
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6568 . 2 1o = suc ∅
2 suc0 4502 . 2 suc ∅ = {∅}
31, 2eqtri 2250 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  c0 3491  {csn 3666  suc csuc 4456  1oc1o 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-suc 4462  df-1o 6568
This theorem is referenced by:  df2o3  6583  df2o2  6584  1n0  6586  el1o  6591  dif1o  6592  ensn1  6956  en1  6959  map1  6973  dom1o  6985  xp1en  6990  exmidpw  7078  exmidpweq  7079  pw1fin  7080  pw1dc0el  7081  exmidpw2en  7082  ss1o0el1o  7083  unfiexmid  7088  0ct  7282  exmidonfinlem  7379  exmidfodomrlemr  7388  exmidfodomrlemrALT  7389  pw1m  7417  pw1on  7419  pw1dom2  7420  pw1ne1  7422  sucpw1nel3  7426  fihashen1  11029  ss1oel2o  16380  pw1ndom3lem  16382  pwle2  16393  pwf1oexmid  16394  sbthom  16424
  Copyright terms: Public domain W3C validator