ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6433
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6420 . 2 1o = suc ∅
2 suc0 4413 . 2 suc ∅ = {∅}
31, 2eqtri 2198 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  c0 3424  {csn 3594  suc csuc 4367  1oc1o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-suc 4373  df-1o 6420
This theorem is referenced by:  df2o3  6434  df2o2  6435  1n0  6436  el1o  6441  dif1o  6442  ensn1  6799  en1  6802  map1  6815  xp1en  6826  exmidpw  6911  exmidpweq  6912  pw1fin  6913  pw1dc0el  6914  ss1o0el1o  6915  unfiexmid  6920  0ct  7109  exmidonfinlem  7195  exmidfodomrlemr  7204  exmidfodomrlemrALT  7205  pw1on  7228  pw1dom2  7229  pw1ne1  7231  sucpw1nel3  7235  fihashen1  10782  ss1oel2o  14905  pwle2  14910  pwf1oexmid  14911  sbthom  14936
  Copyright terms: Public domain W3C validator