| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df1o2 | GIF version | ||
| Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
| Ref | Expression |
|---|---|
| df1o2 | ⊢ 1o = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6483 | . 2 ⊢ 1o = suc ∅ | |
| 2 | suc0 4447 | . 2 ⊢ suc ∅ = {∅} | |
| 3 | 1, 2 | eqtri 2217 | 1 ⊢ 1o = {∅} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∅c0 3451 {csn 3623 suc csuc 4401 1oc1o 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-suc 4407 df-1o 6483 |
| This theorem is referenced by: df2o3 6497 df2o2 6498 1n0 6499 el1o 6504 dif1o 6505 ensn1 6864 en1 6867 map1 6880 xp1en 6891 exmidpw 6978 exmidpweq 6979 pw1fin 6980 pw1dc0el 6981 exmidpw2en 6982 ss1o0el1o 6983 unfiexmid 6988 0ct 7182 exmidonfinlem 7274 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 pw1on 7311 pw1dom2 7312 pw1ne1 7314 sucpw1nel3 7318 fihashen1 10910 ss1oel2o 15724 pwle2 15731 pwf1oexmid 15732 sbthom 15761 |
| Copyright terms: Public domain | W3C validator |