![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df1o2 | GIF version |
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
df1o2 | ⊢ 1o = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6469 | . 2 ⊢ 1o = suc ∅ | |
2 | suc0 4442 | . 2 ⊢ suc ∅ = {∅} | |
3 | 1, 2 | eqtri 2214 | 1 ⊢ 1o = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∅c0 3446 {csn 3618 suc csuc 4396 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-suc 4402 df-1o 6469 |
This theorem is referenced by: df2o3 6483 df2o2 6484 1n0 6485 el1o 6490 dif1o 6491 ensn1 6850 en1 6853 map1 6866 xp1en 6877 exmidpw 6964 exmidpweq 6965 pw1fin 6966 pw1dc0el 6967 exmidpw2en 6968 ss1o0el1o 6969 unfiexmid 6974 0ct 7166 exmidonfinlem 7253 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 pw1on 7286 pw1dom2 7287 pw1ne1 7289 sucpw1nel3 7293 fihashen1 10870 ss1oel2o 15484 pwle2 15489 pwf1oexmid 15490 sbthom 15516 |
Copyright terms: Public domain | W3C validator |