ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6373
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6360 . 2 1o = suc ∅
2 suc0 4371 . 2 suc ∅ = {∅}
31, 2eqtri 2178 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1335  c0 3394  {csn 3560  suc csuc 4325  1oc1o 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-un 3106  df-nul 3395  df-suc 4331  df-1o 6360
This theorem is referenced by:  df2o3  6374  df2o2  6375  1n0  6376  el1o  6381  dif1o  6382  ensn1  6738  en1  6741  map1  6754  xp1en  6765  exmidpw  6850  exmidpweq  6851  pw1fin  6852  pw1dc0el  6853  ss1o0el1o  6854  unfiexmid  6859  0ct  7046  exmidonfinlem  7123  exmidfodomrlemr  7132  exmidfodomrlemrALT  7133  pw1on  7156  pw1dom2  7157  pw1ne1  7159  sucpw1nel3  7163  fihashen1  10668  ss1oel2o  13552  pwle2  13557  pwf1oexmid  13558  sbthom  13584
  Copyright terms: Public domain W3C validator