ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6496
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6483 . 2 1o = suc ∅
2 suc0 4447 . 2 suc ∅ = {∅}
31, 2eqtri 2217 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  c0 3451  {csn 3623  suc csuc 4401  1oc1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-suc 4407  df-1o 6483
This theorem is referenced by:  df2o3  6497  df2o2  6498  1n0  6499  el1o  6504  dif1o  6505  ensn1  6864  en1  6867  map1  6880  xp1en  6891  exmidpw  6978  exmidpweq  6979  pw1fin  6980  pw1dc0el  6981  exmidpw2en  6982  ss1o0el1o  6983  unfiexmid  6988  0ct  7182  exmidonfinlem  7272  exmidfodomrlemr  7281  exmidfodomrlemrALT  7282  pw1on  7309  pw1dom2  7310  pw1ne1  7312  sucpw1nel3  7316  fihashen1  10908  ss1oel2o  15722  pwle2  15729  pwf1oexmid  15730  sbthom  15757
  Copyright terms: Public domain W3C validator