ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 GIF version

Theorem df1o2 6430
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1o = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6417 . 2 1o = suc ∅
2 suc0 4412 . 2 suc ∅ = {∅}
31, 2eqtri 2198 1 1o = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  c0 3423  {csn 3593  suc csuc 4366  1oc1o 6410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-un 3134  df-nul 3424  df-suc 4372  df-1o 6417
This theorem is referenced by:  df2o3  6431  df2o2  6432  1n0  6433  el1o  6438  dif1o  6439  ensn1  6796  en1  6799  map1  6812  xp1en  6823  exmidpw  6908  exmidpweq  6909  pw1fin  6910  pw1dc0el  6911  ss1o0el1o  6912  unfiexmid  6917  0ct  7106  exmidonfinlem  7192  exmidfodomrlemr  7201  exmidfodomrlemrALT  7202  pw1on  7225  pw1dom2  7226  pw1ne1  7228  sucpw1nel3  7232  fihashen1  10779  ss1oel2o  14746  pwle2  14751  pwf1oexmid  14752  sbthom  14777
  Copyright terms: Public domain W3C validator