ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6437
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6429 . . 3 1o = {∅}
21eleq2i 2244 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 4130 . . 3 ∅ ∈ V
43elsn2 3626 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 184 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2148  c0 3422  {csn 3592  1oc1o 6409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4129
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-dif 3131  df-un 3133  df-nul 3423  df-sn 3598  df-suc 4371  df-1o 6416
This theorem is referenced by:  0lt1o  6440  map0e  6685  map1  6811  omp1eomlem  7092  ctmlemr  7106  ctssdclemn0  7108  exmidfodomrlemeldju  7197  exmidfodomrlemreseldju  7198  pw1on  7224  1tonninf  10437
  Copyright terms: Public domain W3C validator