ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6581
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6573 . . 3 1o = {∅}
21eleq2i 2296 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 4210 . . 3 ∅ ∈ V
43elsn2 3700 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 184 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  c0 3491  {csn 3666  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-suc 4461  df-1o 6560
This theorem is referenced by:  0lt1o  6584  map0e  6831  map1  6963  omp1eomlem  7257  ctmlemr  7271  ctssdclemn0  7273  exmidfodomrlemeldju  7373  exmidfodomrlemreseldju  7374  pw1on  7407  1tonninf  10658  1dom1el  16312
  Copyright terms: Public domain W3C validator