Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > el1o | GIF version |
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6397 | . . 3 ⊢ 1o = {∅} | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
3 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
4 | 3 | elsn2 3610 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
5 | 2, 4 | bitri 183 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∅c0 3409 {csn 3576 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-suc 4349 df-1o 6384 |
This theorem is referenced by: 0lt1o 6408 map0e 6652 map1 6778 omp1eomlem 7059 ctmlemr 7073 ctssdclemn0 7075 exmidfodomrlemeldju 7155 exmidfodomrlemreseldju 7156 pw1on 7182 1tonninf 10375 |
Copyright terms: Public domain | W3C validator |