ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6513
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6505 . . 3 1o = {∅}
21eleq2i 2271 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 4170 . . 3 ∅ ∈ V
43elsn2 3666 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 184 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1372  wcel 2175  c0 3459  {csn 3632  1oc1o 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-nul 4169
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-nul 3460  df-sn 3638  df-suc 4416  df-1o 6492
This theorem is referenced by:  0lt1o  6516  map0e  6763  map1  6889  omp1eomlem  7178  ctmlemr  7192  ctssdclemn0  7194  exmidfodomrlemeldju  7289  exmidfodomrlemreseldju  7290  pw1on  7320  1tonninf  10567  1dom1el  15791
  Copyright terms: Public domain W3C validator