| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > el1o | GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6528 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 4179 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 3672 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∅c0 3464 {csn 3638 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-nul 3465 df-sn 3644 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: 0lt1o 6539 map0e 6786 map1 6918 omp1eomlem 7211 ctmlemr 7225 ctssdclemn0 7227 exmidfodomrlemeldju 7323 exmidfodomrlemreseldju 7324 pw1on 7357 1tonninf 10608 1dom1el 16065 |
| Copyright terms: Public domain | W3C validator |