ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6492
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6484 . . 3 1o = {∅}
21eleq2i 2260 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 4157 . . 3 ∅ ∈ V
43elsn2 3653 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 184 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164  c0 3447  {csn 3619  1oc1o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4156
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-nul 3448  df-sn 3625  df-suc 4403  df-1o 6471
This theorem is referenced by:  0lt1o  6495  map0e  6742  map1  6868  omp1eomlem  7155  ctmlemr  7169  ctssdclemn0  7171  exmidfodomrlemeldju  7261  exmidfodomrlemreseldju  7262  pw1on  7288  1tonninf  10515  1dom1el  15553
  Copyright terms: Public domain W3C validator