ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6495
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6487 . . 3 1o = {∅}
21eleq2i 2263 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 4160 . . 3 ∅ ∈ V
43elsn2 3656 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 184 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  c0 3450  {csn 3622  1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-suc 4406  df-1o 6474
This theorem is referenced by:  0lt1o  6498  map0e  6745  map1  6871  omp1eomlem  7160  ctmlemr  7174  ctssdclemn0  7176  exmidfodomrlemeldju  7266  exmidfodomrlemreseldju  7267  pw1on  7293  1tonninf  10533  1dom1el  15637
  Copyright terms: Public domain W3C validator