ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6416
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6408 . . 3 1o = {∅}
21eleq2i 2237 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 4116 . . 3 ∅ ∈ V
43elsn2 3617 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 183 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141  c0 3414  {csn 3583  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-suc 4356  df-1o 6395
This theorem is referenced by:  0lt1o  6419  map0e  6664  map1  6790  omp1eomlem  7071  ctmlemr  7085  ctssdclemn0  7087  exmidfodomrlemeldju  7176  exmidfodomrlemreseldju  7177  pw1on  7203  1tonninf  10396
  Copyright terms: Public domain W3C validator