![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2oconcl | GIF version |
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
2oconcl | ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 3641 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
2 | difeq2 3271 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
3 | dif0 3517 | . . . . . . . 8 ⊢ (1o ∖ ∅) = 1o | |
4 | 2, 3 | eqtrdi 2242 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
5 | difeq2 3271 | . . . . . . . 8 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = (1o ∖ 1o)) | |
6 | difid 3515 | . . . . . . . 8 ⊢ (1o ∖ 1o) = ∅ | |
7 | 5, 6 | eqtrdi 2242 | . . . . . . 7 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = ∅) |
8 | 4, 7 | orim12i 760 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = 1o ∨ (1o ∖ 𝐴) = ∅)) |
9 | 8 | orcomd 730 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝐴 ∈ {∅, 1o} → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
11 | 1on 6476 | . . . . . 6 ⊢ 1o ∈ On | |
12 | difexg 4170 | . . . . . 6 ⊢ (1o ∈ On → (1o ∖ 𝐴) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (1o ∖ 𝐴) ∈ V |
14 | 13 | elpr 3639 | . . . 4 ⊢ ((1o ∖ 𝐴) ∈ {∅, 1o} ↔ ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
15 | 10, 14 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ {∅, 1o}) |
16 | df2o3 6483 | . . 3 ⊢ 2o = {∅, 1o} | |
17 | 15, 16 | eleqtrrdi 2287 | . 2 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ 2o) |
18 | 17, 16 | eleq2s 2288 | 1 ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∅c0 3446 {cpr 3619 Oncon0 4394 1oc1o 6462 2oc2o 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 df-2o 6470 |
This theorem is referenced by: ismkvnex 7214 |
Copyright terms: Public domain | W3C validator |