Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2oconcl | GIF version |
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
2oconcl | ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 3599 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
2 | difeq2 3234 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
3 | dif0 3479 | . . . . . . . 8 ⊢ (1o ∖ ∅) = 1o | |
4 | 2, 3 | eqtrdi 2215 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) |
5 | difeq2 3234 | . . . . . . . 8 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = (1o ∖ 1o)) | |
6 | difid 3477 | . . . . . . . 8 ⊢ (1o ∖ 1o) = ∅ | |
7 | 5, 6 | eqtrdi 2215 | . . . . . . 7 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = ∅) |
8 | 4, 7 | orim12i 749 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = 1o ∨ (1o ∖ 𝐴) = ∅)) |
9 | 8 | orcomd 719 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝐴 ∈ {∅, 1o} → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
11 | 1on 6391 | . . . . . 6 ⊢ 1o ∈ On | |
12 | difexg 4123 | . . . . . 6 ⊢ (1o ∈ On → (1o ∖ 𝐴) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (1o ∖ 𝐴) ∈ V |
14 | 13 | elpr 3597 | . . . 4 ⊢ ((1o ∖ 𝐴) ∈ {∅, 1o} ↔ ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) |
15 | 10, 14 | sylibr 133 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ {∅, 1o}) |
16 | df2o3 6398 | . . 3 ⊢ 2o = {∅, 1o} | |
17 | 15, 16 | eleqtrrdi 2260 | . 2 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ 2o) |
18 | 17, 16 | eleq2s 2261 | 1 ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∅c0 3409 {cpr 3577 Oncon0 4341 1oc1o 6377 2oc2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-1o 6384 df-2o 6385 |
This theorem is referenced by: ismkvnex 7119 |
Copyright terms: Public domain | W3C validator |