ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl GIF version

Theorem 2oconcl 6497
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3645 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 difeq2 3275 . . . . . . . 8 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
3 dif0 3521 . . . . . . . 8 (1o ∖ ∅) = 1o
42, 3eqtrdi 2245 . . . . . . 7 (𝐴 = ∅ → (1o𝐴) = 1o)
5 difeq2 3275 . . . . . . . 8 (𝐴 = 1o → (1o𝐴) = (1o ∖ 1o))
6 difid 3519 . . . . . . . 8 (1o ∖ 1o) = ∅
75, 6eqtrdi 2245 . . . . . . 7 (𝐴 = 1o → (1o𝐴) = ∅)
84, 7orim12i 760 . . . . . 6 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = 1o ∨ (1o𝐴) = ∅))
98orcomd 730 . . . . 5 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
101, 9syl 14 . . . 4 (𝐴 ∈ {∅, 1o} → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
11 1on 6481 . . . . . 6 1o ∈ On
12 difexg 4174 . . . . . 6 (1o ∈ On → (1o𝐴) ∈ V)
1311, 12ax-mp 5 . . . . 5 (1o𝐴) ∈ V
1413elpr 3643 . . . 4 ((1o𝐴) ∈ {∅, 1o} ↔ ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
1510, 14sylibr 134 . . 3 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ {∅, 1o})
16 df2o3 6488 . . 3 2o = {∅, 1o}
1715, 16eleqtrrdi 2290 . 2 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ 2o)
1817, 16eleq2s 2291 1 (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  c0 3450  {cpr 3623  Oncon0 4398  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by:  ismkvnex  7221
  Copyright terms: Public domain W3C validator