ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl GIF version

Theorem 2oconcl 6593
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3689 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 difeq2 3316 . . . . . . . 8 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
3 dif0 3562 . . . . . . . 8 (1o ∖ ∅) = 1o
42, 3eqtrdi 2278 . . . . . . 7 (𝐴 = ∅ → (1o𝐴) = 1o)
5 difeq2 3316 . . . . . . . 8 (𝐴 = 1o → (1o𝐴) = (1o ∖ 1o))
6 difid 3560 . . . . . . . 8 (1o ∖ 1o) = ∅
75, 6eqtrdi 2278 . . . . . . 7 (𝐴 = 1o → (1o𝐴) = ∅)
84, 7orim12i 764 . . . . . 6 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = 1o ∨ (1o𝐴) = ∅))
98orcomd 734 . . . . 5 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
101, 9syl 14 . . . 4 (𝐴 ∈ {∅, 1o} → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
11 1on 6575 . . . . . 6 1o ∈ On
12 difexg 4225 . . . . . 6 (1o ∈ On → (1o𝐴) ∈ V)
1311, 12ax-mp 5 . . . . 5 (1o𝐴) ∈ V
1413elpr 3687 . . . 4 ((1o𝐴) ∈ {∅, 1o} ↔ ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
1510, 14sylibr 134 . . 3 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ {∅, 1o})
16 df2o3 6583 . . 3 2o = {∅, 1o}
1715, 16eleqtrrdi 2323 . 2 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ 2o)
1817, 16eleq2s 2324 1 (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  c0 3491  {cpr 3667  Oncon0 4454  1oc1o 6561  2oc2o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6568  df-2o 6569
This theorem is referenced by:  ismkvnex  7330
  Copyright terms: Public domain W3C validator