| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2oconcl | GIF version | ||
| Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| 2oconcl | ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpri 3645 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
| 2 | difeq2 3275 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = (1o ∖ ∅)) | |
| 3 | dif0 3521 | . . . . . . . 8 ⊢ (1o ∖ ∅) = 1o | |
| 4 | 2, 3 | eqtrdi 2245 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1o ∖ 𝐴) = 1o) | 
| 5 | difeq2 3275 | . . . . . . . 8 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = (1o ∖ 1o)) | |
| 6 | difid 3519 | . . . . . . . 8 ⊢ (1o ∖ 1o) = ∅ | |
| 7 | 5, 6 | eqtrdi 2245 | . . . . . . 7 ⊢ (𝐴 = 1o → (1o ∖ 𝐴) = ∅) | 
| 8 | 4, 7 | orim12i 760 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = 1o ∨ (1o ∖ 𝐴) = ∅)) | 
| 9 | 8 | orcomd 730 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) | 
| 10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝐴 ∈ {∅, 1o} → ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) | 
| 11 | 1on 6481 | . . . . . 6 ⊢ 1o ∈ On | |
| 12 | difexg 4174 | . . . . . 6 ⊢ (1o ∈ On → (1o ∖ 𝐴) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (1o ∖ 𝐴) ∈ V | 
| 14 | 13 | elpr 3643 | . . . 4 ⊢ ((1o ∖ 𝐴) ∈ {∅, 1o} ↔ ((1o ∖ 𝐴) = ∅ ∨ (1o ∖ 𝐴) = 1o)) | 
| 15 | 10, 14 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ {∅, 1o}) | 
| 16 | df2o3 6488 | . . 3 ⊢ 2o = {∅, 1o} | |
| 17 | 15, 16 | eleqtrrdi 2290 | . 2 ⊢ (𝐴 ∈ {∅, 1o} → (1o ∖ 𝐴) ∈ 2o) | 
| 18 | 17, 16 | eleq2s 2291 | 1 ⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ∅c0 3450 {cpr 3623 Oncon0 4398 1oc1o 6467 2oc2o 6468 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 df-2o 6475 | 
| This theorem is referenced by: ismkvnex 7221 | 
| Copyright terms: Public domain | W3C validator |