ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl GIF version

Theorem 2oconcl 6430
Description: Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3612 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 difeq2 3245 . . . . . . . 8 (𝐴 = ∅ → (1o𝐴) = (1o ∖ ∅))
3 dif0 3491 . . . . . . . 8 (1o ∖ ∅) = 1o
42, 3eqtrdi 2224 . . . . . . 7 (𝐴 = ∅ → (1o𝐴) = 1o)
5 difeq2 3245 . . . . . . . 8 (𝐴 = 1o → (1o𝐴) = (1o ∖ 1o))
6 difid 3489 . . . . . . . 8 (1o ∖ 1o) = ∅
75, 6eqtrdi 2224 . . . . . . 7 (𝐴 = 1o → (1o𝐴) = ∅)
84, 7orim12i 759 . . . . . 6 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = 1o ∨ (1o𝐴) = ∅))
98orcomd 729 . . . . 5 ((𝐴 = ∅ ∨ 𝐴 = 1o) → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
101, 9syl 14 . . . 4 (𝐴 ∈ {∅, 1o} → ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
11 1on 6414 . . . . . 6 1o ∈ On
12 difexg 4139 . . . . . 6 (1o ∈ On → (1o𝐴) ∈ V)
1311, 12ax-mp 5 . . . . 5 (1o𝐴) ∈ V
1413elpr 3610 . . . 4 ((1o𝐴) ∈ {∅, 1o} ↔ ((1o𝐴) = ∅ ∨ (1o𝐴) = 1o))
1510, 14sylibr 134 . . 3 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ {∅, 1o})
16 df2o3 6421 . . 3 2o = {∅, 1o}
1715, 16eleqtrrdi 2269 . 2 (𝐴 ∈ {∅, 1o} → (1o𝐴) ∈ 2o)
1817, 16eleq2s 2270 1 (𝐴 ∈ 2o → (1o𝐴) ∈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708   = wceq 1353  wcel 2146  Vcvv 2735  cdif 3124  c0 3420  {cpr 3590  Oncon0 4357  1oc1o 6400  2oc2o 6401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365  df-1o 6407  df-2o 6408
This theorem is referenced by:  ismkvnex  7143
  Copyright terms: Public domain W3C validator