Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstri | GIF version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
3 | sstr2 3154 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: difdif2ss 3384 difdifdirss 3499 snsstp1 3730 snsstp2 3731 nnregexmid 4605 dmexg 4875 rnexg 4876 ssrnres 5053 cossxp 5133 cocnvss 5136 funinsn 5247 fabexg 5385 foimacnv 5460 ssimaex 5557 oprabss 5939 tposssxp 6228 mapsspw 6662 sbthlemi5 6938 sbthlem7 6940 caserel 7064 dmaddpi 7287 dmmulpi 7288 ltrelxr 7980 nnsscn 8883 nn0sscn 9140 nn0ssq 9587 nnssq 9588 qsscn 9590 fzval2 9968 fzossnn 10145 fzo0ssnn0 10171 expcl2lemap 10488 rpexpcl 10495 expge0 10512 expge1 10513 seq3coll 10777 summodclem2a 11344 fsum3cvg3 11359 fsumrpcl 11367 fsumge0 11422 prodmodclem2a 11539 fprodrpcl 11574 fprodge0 11600 fprodge1 11602 infssuzcldc 11906 isprm3 12072 eulerthlemrprm 12183 eulerthlema 12184 eulerthlemh 12185 eulerthlemth 12186 pcprecl 12243 pcprendvds 12244 pcpremul 12247 structfn 12435 strleun 12507 toponsspwpwg 12814 dmtopon 12815 lmbrf 13009 lmres 13042 txcnmpt 13067 qtopbas 13316 tgqioo 13341 dvrecap 13471 cosz12 13495 ioocosf1o 13569 lgsfcl2 13701 2sqlem6 13750 2sqlem8 13753 2sqlem9 13754 |
Copyright terms: Public domain | W3C validator |