| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sstri | GIF version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) | 
| Ref | Expression | 
|---|---|
| sstri.1 | ⊢ 𝐴 ⊆ 𝐵 | 
| sstri.2 | ⊢ 𝐵 ⊆ 𝐶 | 
| Ref | Expression | 
|---|---|
| sstri | ⊢ 𝐴 ⊆ 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | sstr2 3190 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: difdif2ss 3420 difdifdirss 3535 snsstp1 3772 snsstp2 3773 nnregexmid 4657 dmexg 4930 rnexg 4931 ssrnres 5112 cossxp 5192 cocnvss 5195 funinsn 5307 fabexg 5445 foimacnv 5522 ssimaex 5622 oprabss 6008 tposssxp 6307 mapsspw 6743 sbthlemi5 7027 sbthlem7 7029 caserel 7153 dmaddpi 7392 dmmulpi 7393 ltrelxr 8087 nnsscn 8995 nn0sscn 9254 nn0ssq 9702 nnssq 9703 qsscn 9705 fzval2 10086 fzossnn 10265 fzo0ssnn0 10291 infssuzcldc 10325 expcl2lemap 10643 rpexpcl 10650 expge0 10667 expge1 10668 seq3coll 10934 summodclem2a 11546 fsum3cvg3 11561 fsumrpcl 11569 fsumge0 11624 prodmodclem2a 11741 fprodrpcl 11776 fprodge0 11802 fprodge1 11804 nninfctlemfo 12207 isprm3 12286 eulerthlemrprm 12397 eulerthlema 12398 eulerthlemh 12399 eulerthlemth 12400 pcprecl 12458 pcprendvds 12459 pcpremul 12462 4sqlem11 12570 structfn 12697 strleun 12782 cnfldbas 14116 mpocnfldadd 14117 mpocnfldmul 14119 cnfldcj 14121 cnfldtset 14122 cnfldle 14123 cnfldds 14124 psrplusgg 14230 toponsspwpwg 14258 dmtopon 14259 lmbrf 14451 lmres 14484 txcnmpt 14509 qtopbas 14758 tgqioo 14791 dvrecap 14949 cosz12 15016 ioocosf1o 15090 mpodvdsmulf1o 15226 fsumdvdsmul 15227 lgsfcl2 15247 2sqlem6 15361 2sqlem8 15364 2sqlem9 15365 | 
| Copyright terms: Public domain | W3C validator |