| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | GIF version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | sstr2 3191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difdif2ss 3421 difdifdirss 3536 snsstp1 3773 snsstp2 3774 nnregexmid 4658 dmexg 4931 rnexg 4932 ssrnres 5113 cossxp 5193 cocnvss 5196 funinsn 5308 fabexg 5448 foimacnv 5525 ssimaex 5625 oprabss 6012 tposssxp 6316 mapsspw 6752 sbthlemi5 7036 sbthlem7 7038 caserel 7162 dmaddpi 7411 dmmulpi 7412 ltrelxr 8106 nnsscn 9014 nn0sscn 9273 nn0ssq 9721 nnssq 9722 qsscn 9724 fzval2 10105 fzossnn 10284 fzo0ssnn0 10310 infssuzcldc 10344 expcl2lemap 10662 rpexpcl 10669 expge0 10686 expge1 10687 seq3coll 10953 summodclem2a 11565 fsum3cvg3 11580 fsumrpcl 11588 fsumge0 11643 prodmodclem2a 11760 fprodrpcl 11795 fprodge0 11821 fprodge1 11823 nninfctlemfo 12234 isprm3 12313 eulerthlemrprm 12424 eulerthlema 12425 eulerthlemh 12426 eulerthlemth 12427 pcprecl 12485 pcprendvds 12486 pcpremul 12489 4sqlem11 12597 structfn 12724 strleun 12809 prdsvallem 12976 prdsval 12977 prdssca 12979 prdsbas 12980 prdsplusg 12981 prdsmulr 12982 cnfldbas 14194 mpocnfldadd 14195 mpocnfldmul 14197 cnfldcj 14199 cnfldtset 14200 cnfldle 14201 cnfldds 14202 psrplusgg 14312 toponsspwpwg 14366 dmtopon 14367 lmbrf 14559 lmres 14592 txcnmpt 14617 qtopbas 14866 tgqioo 14899 dvrecap 15057 cosz12 15124 ioocosf1o 15198 mpodvdsmulf1o 15334 fsumdvdsmul 15335 lgsfcl2 15355 2sqlem6 15469 2sqlem8 15472 2sqlem9 15473 |
| Copyright terms: Public domain | W3C validator |