Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstri | GIF version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
3 | sstr2 3148 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: difdif2ss 3378 difdifdirss 3492 snsstp1 3722 snsstp2 3723 nnregexmid 4597 dmexg 4867 rnexg 4868 ssrnres 5045 cossxp 5125 cocnvss 5128 funinsn 5236 fabexg 5374 foimacnv 5449 ssimaex 5546 oprabss 5924 tposssxp 6213 mapsspw 6646 sbthlemi5 6922 sbthlem7 6924 caserel 7048 dmaddpi 7262 dmmulpi 7263 ltrelxr 7955 nnsscn 8858 nn0sscn 9115 nn0ssq 9562 nnssq 9563 qsscn 9565 fzval2 9943 fzossnn 10120 fzo0ssnn0 10146 expcl2lemap 10463 rpexpcl 10470 expge0 10487 expge1 10488 seq3coll 10751 summodclem2a 11318 fsum3cvg3 11333 fsumrpcl 11341 fsumge0 11396 prodmodclem2a 11513 fprodrpcl 11548 fprodge0 11574 fprodge1 11576 infssuzcldc 11880 isprm3 12046 eulerthlemrprm 12157 eulerthlema 12158 eulerthlemh 12159 eulerthlemth 12160 pcprecl 12217 pcprendvds 12218 pcpremul 12221 structfn 12409 strleun 12479 toponsspwpwg 12620 dmtopon 12621 lmbrf 12815 lmres 12848 txcnmpt 12873 qtopbas 13122 tgqioo 13147 dvrecap 13277 cosz12 13301 ioocosf1o 13375 lgsfcl2 13507 2sqlem6 13556 2sqlem8 13559 2sqlem9 13560 |
Copyright terms: Public domain | W3C validator |