| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | GIF version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | sstr2 3231 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difdif2ss 3461 difdifdirss 3576 snsstp1 3817 snsstp2 3818 elopabran 4371 nnregexmid 4712 dmexg 4987 rnexg 4988 ssrnres 5170 cossxp 5250 cocnvss 5253 funinsn 5369 fabexg 5512 foimacnv 5589 ssimaex 5694 oprabss 6089 tposssxp 6393 mapsspw 6829 sbthlemi5 7124 sbthlem7 7126 caserel 7250 dmaddpi 7508 dmmulpi 7509 ltrelxr 8203 nnsscn 9111 nn0sscn 9370 nn0ssq 9819 nnssq 9820 qsscn 9822 fzval2 10203 fzossnn 10385 fzo0ssnn0 10416 infssuzcldc 10450 expcl2lemap 10768 rpexpcl 10775 expge0 10792 expge1 10793 seq3coll 11059 summodclem2a 11887 fsum3cvg3 11902 fsumrpcl 11910 fsumge0 11965 prodmodclem2a 12082 fprodrpcl 12117 fprodge0 12143 fprodge1 12145 nninfctlemfo 12556 isprm3 12635 eulerthlemrprm 12746 eulerthlema 12747 eulerthlemh 12748 eulerthlemth 12749 pcprecl 12807 pcprendvds 12808 pcpremul 12811 4sqlem11 12919 structfn 13046 strleun 13132 prdsvallem 13300 prdsval 13301 prdssca 13303 prdsbas 13304 prdsplusg 13305 prdsmulr 13306 cnfldbas 14518 mpocnfldadd 14519 mpocnfldmul 14521 cnfldcj 14523 cnfldtset 14524 cnfldle 14525 cnfldds 14526 psrplusgg 14636 toponsspwpwg 14690 dmtopon 14691 lmbrf 14883 lmres 14916 txcnmpt 14941 qtopbas 15190 tgqioo 15223 dvrecap 15381 cosz12 15448 ioocosf1o 15522 mpodvdsmulf1o 15658 fsumdvdsmul 15659 lgsfcl2 15679 2sqlem6 15793 2sqlem8 15796 2sqlem9 15797 |
| Copyright terms: Public domain | W3C validator |