Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstri | GIF version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
3 | sstr2 3154 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: difdif2ss 3384 difdifdirss 3498 snsstp1 3728 snsstp2 3729 nnregexmid 4603 dmexg 4873 rnexg 4874 ssrnres 5051 cossxp 5131 cocnvss 5134 funinsn 5245 fabexg 5383 foimacnv 5458 ssimaex 5555 oprabss 5936 tposssxp 6225 mapsspw 6658 sbthlemi5 6934 sbthlem7 6936 caserel 7060 dmaddpi 7274 dmmulpi 7275 ltrelxr 7967 nnsscn 8870 nn0sscn 9127 nn0ssq 9574 nnssq 9575 qsscn 9577 fzval2 9955 fzossnn 10132 fzo0ssnn0 10158 expcl2lemap 10475 rpexpcl 10482 expge0 10499 expge1 10500 seq3coll 10764 summodclem2a 11331 fsum3cvg3 11346 fsumrpcl 11354 fsumge0 11409 prodmodclem2a 11526 fprodrpcl 11561 fprodge0 11587 fprodge1 11589 infssuzcldc 11893 isprm3 12059 eulerthlemrprm 12170 eulerthlema 12171 eulerthlemh 12172 eulerthlemth 12173 pcprecl 12230 pcprendvds 12231 pcpremul 12234 structfn 12422 strleun 12494 toponsspwpwg 12773 dmtopon 12774 lmbrf 12968 lmres 13001 txcnmpt 13026 qtopbas 13275 tgqioo 13300 dvrecap 13430 cosz12 13454 ioocosf1o 13528 lgsfcl2 13660 2sqlem6 13709 2sqlem8 13712 2sqlem9 13713 |
Copyright terms: Public domain | W3C validator |