| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | GIF version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | sstr2 3204 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: difdif2ss 3434 difdifdirss 3549 snsstp1 3789 snsstp2 3790 nnregexmid 4677 dmexg 4951 rnexg 4952 ssrnres 5134 cossxp 5214 cocnvss 5217 funinsn 5332 fabexg 5475 foimacnv 5552 ssimaex 5653 oprabss 6044 tposssxp 6348 mapsspw 6784 sbthlemi5 7078 sbthlem7 7080 caserel 7204 dmaddpi 7458 dmmulpi 7459 ltrelxr 8153 nnsscn 9061 nn0sscn 9320 nn0ssq 9769 nnssq 9770 qsscn 9772 fzval2 10153 fzossnn 10335 fzo0ssnn0 10366 infssuzcldc 10400 expcl2lemap 10718 rpexpcl 10725 expge0 10742 expge1 10743 seq3coll 11009 summodclem2a 11767 fsum3cvg3 11782 fsumrpcl 11790 fsumge0 11845 prodmodclem2a 11962 fprodrpcl 11997 fprodge0 12023 fprodge1 12025 nninfctlemfo 12436 isprm3 12515 eulerthlemrprm 12626 eulerthlema 12627 eulerthlemh 12628 eulerthlemth 12629 pcprecl 12687 pcprendvds 12688 pcpremul 12691 4sqlem11 12799 structfn 12926 strleun 13011 prdsvallem 13179 prdsval 13180 prdssca 13182 prdsbas 13183 prdsplusg 13184 prdsmulr 13185 cnfldbas 14397 mpocnfldadd 14398 mpocnfldmul 14400 cnfldcj 14402 cnfldtset 14403 cnfldle 14404 cnfldds 14405 psrplusgg 14515 toponsspwpwg 14569 dmtopon 14570 lmbrf 14762 lmres 14795 txcnmpt 14820 qtopbas 15069 tgqioo 15102 dvrecap 15260 cosz12 15327 ioocosf1o 15401 mpodvdsmulf1o 15537 fsumdvdsmul 15538 lgsfcl2 15558 2sqlem6 15672 2sqlem8 15675 2sqlem9 15676 |
| Copyright terms: Public domain | W3C validator |