| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | GIF version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | sstr2 3191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difdif2ss 3421 difdifdirss 3536 snsstp1 3773 snsstp2 3774 nnregexmid 4658 dmexg 4931 rnexg 4932 ssrnres 5113 cossxp 5193 cocnvss 5196 funinsn 5308 fabexg 5448 foimacnv 5525 ssimaex 5625 oprabss 6012 tposssxp 6316 mapsspw 6752 sbthlemi5 7036 sbthlem7 7038 caserel 7162 dmaddpi 7409 dmmulpi 7410 ltrelxr 8104 nnsscn 9012 nn0sscn 9271 nn0ssq 9719 nnssq 9720 qsscn 9722 fzval2 10103 fzossnn 10282 fzo0ssnn0 10308 infssuzcldc 10342 expcl2lemap 10660 rpexpcl 10667 expge0 10684 expge1 10685 seq3coll 10951 summodclem2a 11563 fsum3cvg3 11578 fsumrpcl 11586 fsumge0 11641 prodmodclem2a 11758 fprodrpcl 11793 fprodge0 11819 fprodge1 11821 nninfctlemfo 12232 isprm3 12311 eulerthlemrprm 12422 eulerthlema 12423 eulerthlemh 12424 eulerthlemth 12425 pcprecl 12483 pcprendvds 12484 pcpremul 12487 4sqlem11 12595 structfn 12722 strleun 12807 prdsvallem 12974 prdsval 12975 prdssca 12977 prdsbas 12978 prdsplusg 12979 prdsmulr 12980 cnfldbas 14192 mpocnfldadd 14193 mpocnfldmul 14195 cnfldcj 14197 cnfldtset 14198 cnfldle 14199 cnfldds 14200 psrplusgg 14306 toponsspwpwg 14342 dmtopon 14343 lmbrf 14535 lmres 14568 txcnmpt 14593 qtopbas 14842 tgqioo 14875 dvrecap 15033 cosz12 15100 ioocosf1o 15174 mpodvdsmulf1o 15310 fsumdvdsmul 15311 lgsfcl2 15331 2sqlem6 15445 2sqlem8 15448 2sqlem9 15449 |
| Copyright terms: Public domain | W3C validator |