| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | GIF version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sstri.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sstri.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | sstr2 3199 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: difdif2ss 3429 difdifdirss 3544 snsstp1 3782 snsstp2 3783 nnregexmid 4667 dmexg 4940 rnexg 4941 ssrnres 5122 cossxp 5202 cocnvss 5205 funinsn 5317 fabexg 5457 foimacnv 5534 ssimaex 5634 oprabss 6021 tposssxp 6325 mapsspw 6761 sbthlemi5 7045 sbthlem7 7047 caserel 7171 dmaddpi 7420 dmmulpi 7421 ltrelxr 8115 nnsscn 9023 nn0sscn 9282 nn0ssq 9731 nnssq 9732 qsscn 9734 fzval2 10115 fzossnn 10294 fzo0ssnn0 10325 infssuzcldc 10359 expcl2lemap 10677 rpexpcl 10684 expge0 10701 expge1 10702 seq3coll 10968 summodclem2a 11611 fsum3cvg3 11626 fsumrpcl 11634 fsumge0 11689 prodmodclem2a 11806 fprodrpcl 11841 fprodge0 11867 fprodge1 11869 nninfctlemfo 12280 isprm3 12359 eulerthlemrprm 12470 eulerthlema 12471 eulerthlemh 12472 eulerthlemth 12473 pcprecl 12531 pcprendvds 12532 pcpremul 12535 4sqlem11 12643 structfn 12770 strleun 12855 prdsvallem 13022 prdsval 13023 prdssca 13025 prdsbas 13026 prdsplusg 13027 prdsmulr 13028 cnfldbas 14240 mpocnfldadd 14241 mpocnfldmul 14243 cnfldcj 14245 cnfldtset 14246 cnfldle 14247 cnfldds 14248 psrplusgg 14358 toponsspwpwg 14412 dmtopon 14413 lmbrf 14605 lmres 14638 txcnmpt 14663 qtopbas 14912 tgqioo 14945 dvrecap 15103 cosz12 15170 ioocosf1o 15244 mpodvdsmulf1o 15380 fsumdvdsmul 15381 lgsfcl2 15401 2sqlem6 15515 2sqlem8 15518 2sqlem9 15519 |
| Copyright terms: Public domain | W3C validator |