Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snssi | GIF version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3688 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2125 ⊆ wss 3098 {csn 3556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-in 3104 df-ss 3111 df-sn 3562 |
This theorem is referenced by: difsnss 3698 sssnm 3713 tpssi 3718 snelpwi 4167 intid 4179 abnexg 4400 ordsucss 4457 xpsspw 4691 djussxp 4724 xpimasn 5027 fconst6g 5361 f1sng 5449 fvimacnvi 5574 fsn2 5634 fnressn 5646 fsnunf 5660 mapsn 6624 unsnfidcel 6854 en1eqsn 6881 exmidfodomrlemim 7115 axresscn 7759 nn0ssre 9073 1fv 10016 fxnn0nninf 10315 1exp 10426 hashdifsn 10670 hashdifpr 10671 fsum00 11336 hash2iun1dif1 11354 exmidunben 12114 isneip 12493 neipsm 12501 opnneip 12506 |
Copyright terms: Public domain | W3C validator |