| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3757 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: difsnss 3769 sssnm 3785 tpssi 3790 snelpwi 4246 intid 4258 abnexg 4482 ordsucss 4541 xpsspw 4776 djussxp 4812 xpimasn 5119 fconst6g 5459 f1sng 5549 fvimacnvi 5679 fsn2 5739 fnressn 5751 fsnunf 5765 mapsn 6758 unsnfidcel 6991 en1eqsn 7023 exmidfodomrlemim 7280 axresscn 7944 nn0ssre 9270 1fv 10231 fxnn0nninf 10548 1exp 10677 hashdifsn 10928 hashdifpr 10929 fsum00 11644 hash2iun1dif1 11662 4sqlem19 12603 exmidunben 12668 lspsncl 14024 lspsnss 14036 lspsnid 14039 znlidl 14266 isneip 14466 neipsm 14474 opnneip 14479 plyun0 15056 plycjlemc 15080 plycj 15081 plyrecj 15083 dvply2g 15086 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |