| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3778 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ⊆ wss 3174 {csn 3643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-sn 3649 |
| This theorem is referenced by: difsnss 3790 sssnm 3808 tpssi 3813 snelpwi 4273 intid 4286 abnexg 4511 ordsucss 4570 xpsspw 4805 djussxp 4841 xpimasn 5150 fconst6g 5496 f1sng 5587 fvimacnvi 5717 fsn2 5777 fnressn 5793 fsnunf 5807 mapsn 6800 unsnfidcel 7044 en1eqsn 7076 exmidfodomrlemim 7340 axresscn 8008 nn0ssre 9334 1fv 10296 fxnn0nninf 10621 1exp 10750 hashdifsn 11001 hashdifpr 11002 fsum00 11888 hash2iun1dif1 11906 4sqlem19 12847 exmidunben 12912 lspsncl 14269 lspsnss 14281 lspsnid 14284 znlidl 14511 isneip 14733 neipsm 14741 opnneip 14746 plyun0 15323 plycjlemc 15347 plycj 15348 plyrecj 15350 dvply2g 15353 perfectlem2 15587 |
| Copyright terms: Public domain | W3C validator |