| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3756 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 |
| This theorem is referenced by: difsnss 3768 sssnm 3784 tpssi 3789 snelpwi 4245 intid 4257 abnexg 4481 ordsucss 4540 xpsspw 4775 djussxp 4811 xpimasn 5118 fconst6g 5456 f1sng 5546 fvimacnvi 5676 fsn2 5736 fnressn 5748 fsnunf 5762 mapsn 6749 unsnfidcel 6982 en1eqsn 7014 exmidfodomrlemim 7268 axresscn 7927 nn0ssre 9253 1fv 10214 fxnn0nninf 10531 1exp 10660 hashdifsn 10911 hashdifpr 10912 fsum00 11627 hash2iun1dif1 11645 4sqlem19 12578 exmidunben 12643 lspsncl 13948 lspsnss 13960 lspsnid 13963 znlidl 14190 isneip 14382 neipsm 14390 opnneip 14395 plyun0 14972 plycjlemc 14996 plycj 14997 plyrecj 14999 dvply2g 15002 perfectlem2 15236 |
| Copyright terms: Public domain | W3C validator |