| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3757 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: difsnss 3769 sssnm 3785 tpssi 3790 snelpwi 4246 intid 4258 abnexg 4482 ordsucss 4541 xpsspw 4776 djussxp 4812 xpimasn 5119 fconst6g 5459 f1sng 5549 fvimacnvi 5679 fsn2 5739 fnressn 5751 fsnunf 5765 mapsn 6758 unsnfidcel 6991 en1eqsn 7023 exmidfodomrlemim 7282 axresscn 7946 nn0ssre 9272 1fv 10233 fxnn0nninf 10550 1exp 10679 hashdifsn 10930 hashdifpr 10931 fsum00 11646 hash2iun1dif1 11664 4sqlem19 12605 exmidunben 12670 lspsncl 14026 lspsnss 14038 lspsnid 14041 znlidl 14268 isneip 14490 neipsm 14498 opnneip 14503 plyun0 15080 plycjlemc 15104 plycj 15105 plyrecj 15107 dvply2g 15110 perfectlem2 15344 |
| Copyright terms: Public domain | W3C validator |