Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snssi | GIF version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3709 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ⊆ wss 3116 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: difsnss 3719 sssnm 3734 tpssi 3739 snelpwi 4190 intid 4202 abnexg 4424 ordsucss 4481 xpsspw 4716 djussxp 4749 xpimasn 5052 fconst6g 5386 f1sng 5474 fvimacnvi 5599 fsn2 5659 fnressn 5671 fsnunf 5685 mapsn 6656 unsnfidcel 6886 en1eqsn 6913 exmidfodomrlemim 7157 axresscn 7801 nn0ssre 9118 1fv 10074 fxnn0nninf 10373 1exp 10484 hashdifsn 10732 hashdifpr 10733 fsum00 11403 hash2iun1dif1 11421 exmidunben 12359 isneip 12786 neipsm 12794 opnneip 12799 |
Copyright terms: Public domain | W3C validator |