| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3801 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: difsnss 3813 sssnm 3831 tpssi 3836 snelpwi 4296 intid 4309 abnexg 4536 ordsucss 4595 xpsspw 4830 djussxp 4866 xpimasn 5176 fconst6g 5523 f1sng 5614 fvimacnvi 5748 fsn2 5808 fnressn 5824 fsnunf 5838 mapsn 6835 unsnfidcel 7079 en1eqsn 7111 exmidfodomrlemim 7375 axresscn 8043 nn0ssre 9369 1fv 10331 fxnn0nninf 10656 1exp 10785 hashdifsn 11036 hashdifpr 11037 fsum00 11968 hash2iun1dif1 11986 4sqlem19 12927 exmidunben 12992 lspsncl 14350 lspsnss 14362 lspsnid 14365 znlidl 14592 isneip 14814 neipsm 14822 opnneip 14827 plyun0 15404 plycjlemc 15428 plycj 15429 plyrecj 15431 dvply2g 15434 perfectlem2 15668 |
| Copyright terms: Public domain | W3C validator |