![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssi | GIF version |
Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3752 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-sn 3624 |
This theorem is referenced by: difsnss 3764 sssnm 3780 tpssi 3785 snelpwi 4241 intid 4253 abnexg 4477 ordsucss 4536 xpsspw 4771 djussxp 4807 xpimasn 5114 fconst6g 5452 f1sng 5542 fvimacnvi 5672 fsn2 5732 fnressn 5744 fsnunf 5758 mapsn 6744 unsnfidcel 6977 en1eqsn 7007 exmidfodomrlemim 7261 axresscn 7920 nn0ssre 9244 1fv 10205 fxnn0nninf 10510 1exp 10639 hashdifsn 10890 hashdifpr 10891 fsum00 11605 hash2iun1dif1 11623 4sqlem19 12547 exmidunben 12583 lspsncl 13888 lspsnss 13900 lspsnid 13903 znlidl 14122 isneip 14314 neipsm 14322 opnneip 14327 plyun0 14882 |
Copyright terms: Public domain | W3C validator |