| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssi | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| snssi | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3766 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ⊆ wss 3165 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: difsnss 3778 sssnm 3794 tpssi 3799 snelpwi 4255 intid 4267 abnexg 4492 ordsucss 4551 xpsspw 4786 djussxp 4822 xpimasn 5130 fconst6g 5473 f1sng 5563 fvimacnvi 5693 fsn2 5753 fnressn 5769 fsnunf 5783 mapsn 6776 unsnfidcel 7017 en1eqsn 7049 exmidfodomrlemim 7308 axresscn 7972 nn0ssre 9298 1fv 10260 fxnn0nninf 10582 1exp 10711 hashdifsn 10962 hashdifpr 10963 fsum00 11744 hash2iun1dif1 11762 4sqlem19 12703 exmidunben 12768 lspsncl 14125 lspsnss 14137 lspsnid 14140 znlidl 14367 isneip 14589 neipsm 14597 opnneip 14602 plyun0 15179 plycjlemc 15203 plycj 15204 plyrecj 15206 dvply2g 15209 perfectlem2 15443 |
| Copyright terms: Public domain | W3C validator |