Step | Hyp | Ref
| Expression |
1 | | difeq2 3239 |
. . 3
⊢ (𝑤 = ∅ → (𝐴 ∖ 𝑤) = (𝐴 ∖ ∅)) |
2 | 1 | breq2d 3999 |
. 2
⊢ (𝑤 = ∅ → (ω
≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖
∅))) |
3 | | difeq2 3239 |
. . 3
⊢ (𝑤 = 𝑢 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝑢)) |
4 | 3 | breq2d 3999 |
. 2
⊢ (𝑤 = 𝑢 → (ω ≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖ 𝑢))) |
5 | | difeq2 3239 |
. . 3
⊢ (𝑤 = (𝑢 ∪ {𝑣}) → (𝐴 ∖ 𝑤) = (𝐴 ∖ (𝑢 ∪ {𝑣}))) |
6 | 5 | breq2d 3999 |
. 2
⊢ (𝑤 = (𝑢 ∪ {𝑣}) → (ω ≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣})))) |
7 | | difeq2 3239 |
. . 3
⊢ (𝑤 = 𝐵 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝐵)) |
8 | 7 | breq2d 3999 |
. 2
⊢ (𝑤 = 𝐵 → (ω ≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖ 𝐵))) |
9 | | simplr 525 |
. . 3
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ 𝐴) |
10 | | dif0 3484 |
. . 3
⊢ (𝐴 ∖ ∅) = 𝐴 |
11 | 9, 10 | breqtrrdi 4029 |
. 2
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖
∅)) |
12 | | difss 3253 |
. . . . . . 7
⊢ (𝐴 ∖ 𝑢) ⊆ 𝐴 |
13 | | ssralv 3211 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝑢) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦)) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 DECID
𝑥 = 𝑦 → ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
15 | 14 | ralimi 2533 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
16 | | ssralv 3211 |
. . . . . . 7
⊢ ((𝐴 ∖ 𝑢) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦 → ∀𝑥 ∈ (𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦)) |
17 | 12, 15, 16 | mpsyl 65 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑥 ∈ (𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
18 | 17 | ad5antr 493 |
. . . . 5
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ∀𝑥 ∈ (𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
19 | | simpr 109 |
. . . . 5
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ω ≼ (𝐴 ∖ 𝑢)) |
20 | | simprl 526 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → 𝐵 ⊆ 𝐴) |
21 | 20 | ad3antrrr 489 |
. . . . . 6
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → 𝐵 ⊆ 𝐴) |
22 | | simplrr 531 |
. . . . . 6
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → 𝑣 ∈ (𝐵 ∖ 𝑢)) |
23 | | ssdif 3262 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∖ 𝑢) ⊆ (𝐴 ∖ 𝑢)) |
24 | 23 | sseld 3146 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 → (𝑣 ∈ (𝐵 ∖ 𝑢) → 𝑣 ∈ (𝐴 ∖ 𝑢))) |
25 | 21, 22, 24 | sylc 62 |
. . . . 5
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → 𝑣 ∈ (𝐴 ∖ 𝑢)) |
26 | | difinfsn 7073 |
. . . . 5
⊢
((∀𝑥 ∈
(𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦 ∧ ω ≼ (𝐴 ∖ 𝑢) ∧ 𝑣 ∈ (𝐴 ∖ 𝑢)) → ω ≼ ((𝐴 ∖ 𝑢) ∖ {𝑣})) |
27 | 18, 19, 25, 26 | syl3anc 1233 |
. . . 4
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ω ≼ ((𝐴 ∖ 𝑢) ∖ {𝑣})) |
28 | | difun1 3387 |
. . . 4
⊢ (𝐴 ∖ (𝑢 ∪ {𝑣})) = ((𝐴 ∖ 𝑢) ∖ {𝑣}) |
29 | 27, 28 | breqtrrdi 4029 |
. . 3
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣}))) |
30 | 29 | ex 114 |
. 2
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) → (ω ≼ (𝐴 ∖ 𝑢) → ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣})))) |
31 | | simprr 527 |
. 2
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → 𝐵 ∈ Fin) |
32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 6866 |
1
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) |