ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfinf GIF version

Theorem difinfinf 7210
Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfinf (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem difinfinf
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3286 . . 3 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∖ ∅))
21breq2d 4059 . 2 (𝑤 = ∅ → (ω ≼ (𝐴𝑤) ↔ ω ≼ (𝐴 ∖ ∅)))
3 difeq2 3286 . . 3 (𝑤 = 𝑢 → (𝐴𝑤) = (𝐴𝑢))
43breq2d 4059 . 2 (𝑤 = 𝑢 → (ω ≼ (𝐴𝑤) ↔ ω ≼ (𝐴𝑢)))
5 difeq2 3286 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (𝐴𝑤) = (𝐴 ∖ (𝑢 ∪ {𝑣})))
65breq2d 4059 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → (ω ≼ (𝐴𝑤) ↔ ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣}))))
7 difeq2 3286 . . 3 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
87breq2d 4059 . 2 (𝑤 = 𝐵 → (ω ≼ (𝐴𝑤) ↔ ω ≼ (𝐴𝐵)))
9 simplr 528 . . 3 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ 𝐴)
10 dif0 3532 . . 3 (𝐴 ∖ ∅) = 𝐴
119, 10breqtrrdi 4089 . 2 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ ∅))
12 difss 3300 . . . . . . 7 (𝐴𝑢) ⊆ 𝐴
13 ssralv 3258 . . . . . . . . 9 ((𝐴𝑢) ⊆ 𝐴 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦))
1412, 13ax-mp 5 . . . . . . . 8 (∀𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦)
1514ralimi 2570 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑥𝐴𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦)
16 ssralv 3258 . . . . . . 7 ((𝐴𝑢) ⊆ 𝐴 → (∀𝑥𝐴𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦 → ∀𝑥 ∈ (𝐴𝑢)∀𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦))
1712, 15, 16mpsyl 65 . . . . . 6 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑥 ∈ (𝐴𝑢)∀𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦)
1817ad5antr 496 . . . . 5 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → ∀𝑥 ∈ (𝐴𝑢)∀𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦)
19 simpr 110 . . . . 5 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → ω ≼ (𝐴𝑢))
20 simprl 529 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → 𝐵𝐴)
2120ad3antrrr 492 . . . . . 6 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → 𝐵𝐴)
22 simplrr 536 . . . . . 6 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → 𝑣 ∈ (𝐵𝑢))
23 ssdif 3309 . . . . . . 7 (𝐵𝐴 → (𝐵𝑢) ⊆ (𝐴𝑢))
2423sseld 3193 . . . . . 6 (𝐵𝐴 → (𝑣 ∈ (𝐵𝑢) → 𝑣 ∈ (𝐴𝑢)))
2521, 22, 24sylc 62 . . . . 5 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → 𝑣 ∈ (𝐴𝑢))
26 difinfsn 7209 . . . . 5 ((∀𝑥 ∈ (𝐴𝑢)∀𝑦 ∈ (𝐴𝑢)DECID 𝑥 = 𝑦 ∧ ω ≼ (𝐴𝑢) ∧ 𝑣 ∈ (𝐴𝑢)) → ω ≼ ((𝐴𝑢) ∖ {𝑣}))
2718, 19, 25, 26syl3anc 1250 . . . 4 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → ω ≼ ((𝐴𝑢) ∖ {𝑣}))
28 difun1 3434 . . . 4 (𝐴 ∖ (𝑢 ∪ {𝑣})) = ((𝐴𝑢) ∖ {𝑣})
2927, 28breqtrrdi 4089 . . 3 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) ∧ ω ≼ (𝐴𝑢)) → ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣})))
3029ex 115 . 2 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢𝐵𝑣 ∈ (𝐵𝑢))) → (ω ≼ (𝐴𝑢) → ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣}))))
31 simprr 531 . 2 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → 𝐵 ∈ Fin)
322, 4, 6, 8, 11, 30, 31findcard2sd 6996 1 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  cdif 3164  cun 3165  wss 3167  c0 3461  {csn 3634   class class class wbr 4047  ωcom 4642  cdom 6833  Fincfn 6834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-1st 6233  df-2nd 6234  df-1o 6509  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-dju 7147  df-inl 7156  df-inr 7157  df-case 7193
This theorem is referenced by:  inffinp1  12844
  Copyright terms: Public domain W3C validator