| Step | Hyp | Ref
| Expression |
| 1 | | difeq2 3276 |
. . 3
⊢ (𝑤 = ∅ → (𝐴 ∖ 𝑤) = (𝐴 ∖ ∅)) |
| 2 | 1 | breq2d 4046 |
. 2
⊢ (𝑤 = ∅ → (ω
≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖
∅))) |
| 3 | | difeq2 3276 |
. . 3
⊢ (𝑤 = 𝑢 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝑢)) |
| 4 | 3 | breq2d 4046 |
. 2
⊢ (𝑤 = 𝑢 → (ω ≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖ 𝑢))) |
| 5 | | difeq2 3276 |
. . 3
⊢ (𝑤 = (𝑢 ∪ {𝑣}) → (𝐴 ∖ 𝑤) = (𝐴 ∖ (𝑢 ∪ {𝑣}))) |
| 6 | 5 | breq2d 4046 |
. 2
⊢ (𝑤 = (𝑢 ∪ {𝑣}) → (ω ≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣})))) |
| 7 | | difeq2 3276 |
. . 3
⊢ (𝑤 = 𝐵 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝐵)) |
| 8 | 7 | breq2d 4046 |
. 2
⊢ (𝑤 = 𝐵 → (ω ≼ (𝐴 ∖ 𝑤) ↔ ω ≼ (𝐴 ∖ 𝐵))) |
| 9 | | simplr 528 |
. . 3
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ 𝐴) |
| 10 | | dif0 3522 |
. . 3
⊢ (𝐴 ∖ ∅) = 𝐴 |
| 11 | 9, 10 | breqtrrdi 4076 |
. 2
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖
∅)) |
| 12 | | difss 3290 |
. . . . . . 7
⊢ (𝐴 ∖ 𝑢) ⊆ 𝐴 |
| 13 | | ssralv 3248 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝑢) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 DECID
𝑥 = 𝑦 → ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
| 15 | 14 | ralimi 2560 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
| 16 | | ssralv 3248 |
. . . . . . 7
⊢ ((𝐴 ∖ 𝑢) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦 → ∀𝑥 ∈ (𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦)) |
| 17 | 12, 15, 16 | mpsyl 65 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑥 ∈ (𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
| 18 | 17 | ad5antr 496 |
. . . . 5
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ∀𝑥 ∈ (𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦) |
| 19 | | simpr 110 |
. . . . 5
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ω ≼ (𝐴 ∖ 𝑢)) |
| 20 | | simprl 529 |
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → 𝐵 ⊆ 𝐴) |
| 21 | 20 | ad3antrrr 492 |
. . . . . 6
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → 𝐵 ⊆ 𝐴) |
| 22 | | simplrr 536 |
. . . . . 6
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → 𝑣 ∈ (𝐵 ∖ 𝑢)) |
| 23 | | ssdif 3299 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∖ 𝑢) ⊆ (𝐴 ∖ 𝑢)) |
| 24 | 23 | sseld 3183 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 → (𝑣 ∈ (𝐵 ∖ 𝑢) → 𝑣 ∈ (𝐴 ∖ 𝑢))) |
| 25 | 21, 22, 24 | sylc 62 |
. . . . 5
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → 𝑣 ∈ (𝐴 ∖ 𝑢)) |
| 26 | | difinfsn 7175 |
. . . . 5
⊢
((∀𝑥 ∈
(𝐴 ∖ 𝑢)∀𝑦 ∈ (𝐴 ∖ 𝑢)DECID 𝑥 = 𝑦 ∧ ω ≼ (𝐴 ∖ 𝑢) ∧ 𝑣 ∈ (𝐴 ∖ 𝑢)) → ω ≼ ((𝐴 ∖ 𝑢) ∖ {𝑣})) |
| 27 | 18, 19, 25, 26 | syl3anc 1249 |
. . . 4
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ω ≼ ((𝐴 ∖ 𝑢) ∖ {𝑣})) |
| 28 | | difun1 3424 |
. . . 4
⊢ (𝐴 ∖ (𝑢 ∪ {𝑣})) = ((𝐴 ∖ 𝑢) ∖ {𝑣}) |
| 29 | 27, 28 | breqtrrdi 4076 |
. . 3
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) ∧ ω ≼ (𝐴 ∖ 𝑢)) → ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣}))) |
| 30 | 29 | ex 115 |
. 2
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) ∧ 𝑢 ∈ Fin) ∧ (𝑢 ⊆ 𝐵 ∧ 𝑣 ∈ (𝐵 ∖ 𝑢))) → (ω ≼ (𝐴 ∖ 𝑢) → ω ≼ (𝐴 ∖ (𝑢 ∪ {𝑣})))) |
| 31 | | simprr 531 |
. 2
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → 𝐵 ∈ Fin) |
| 32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 6962 |
1
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) |