Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq2 | GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3274 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 3271 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 3271 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∪ cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: uneq12 3276 uneq2i 3278 uneq2d 3281 uneqin 3378 disjssun 3478 uniprg 3811 sucprc 4397 unexb 4427 unfiexmid 6895 unfidisj 6899 hashunlem 10739 bdunexb 13955 bj-unexg 13956 |
Copyright terms: Public domain | W3C validator |