Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrnmpo | GIF version |
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
elrnmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elrnmpo | ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | rnmpo 5963 | . . 3 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
3 | 2 | eleq2i 2237 | . 2 ⊢ (𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶}) |
4 | elrnmpo.1 | . . . . . 6 ⊢ 𝐶 ∈ V | |
5 | eleq1 2233 | . . . . . 6 ⊢ (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V)) | |
6 | 4, 5 | mpbiri 167 | . . . . 5 ⊢ (𝐷 = 𝐶 → 𝐷 ∈ V) |
7 | 6 | rexlimivw 2583 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
8 | 7 | rexlimivw 2583 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
9 | eqeq1 2177 | . . . 4 ⊢ (𝑧 = 𝐷 → (𝑧 = 𝐶 ↔ 𝐷 = 𝐶)) | |
10 | 9 | 2rexbidv 2495 | . . 3 ⊢ (𝑧 = 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) |
11 | 8, 10 | elab3 2882 | . 2 ⊢ (𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
12 | 3, 11 | bitri 183 | 1 ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 ∃wrex 2449 Vcvv 2730 ran crn 4612 ∈ cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |