ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpo GIF version

Theorem elrnmpo 6117
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
elrnmpo.1 𝐶 ∈ V
Assertion
Ref Expression
elrnmpo (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem elrnmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 6114 . . 3 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
32eleq2i 2296 . 2 (𝐷 ∈ ran 𝐹𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶})
4 elrnmpo.1 . . . . . 6 𝐶 ∈ V
5 eleq1 2292 . . . . . 6 (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V))
64, 5mpbiri 168 . . . . 5 (𝐷 = 𝐶𝐷 ∈ V)
76rexlimivw 2644 . . . 4 (∃𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
87rexlimivw 2644 . . 3 (∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
9 eqeq1 2236 . . . 4 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
1092rexbidv 2555 . . 3 (𝑧 = 𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
118, 10elab3 2955 . 2 (𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
123, 11bitri 184 1 (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  ran crn 4719  cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729  df-oprab 6004  df-mpo 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator