ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotam GIF version

Theorem iotam 5200
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.)
Hypothesis
Ref Expression
iotam.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iotam ((𝐴𝑉 ∧ ∃𝑤 𝑤𝐴𝐴 = (℩𝑥𝜑)) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑤,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑤)   𝑉(𝑥,𝑤)

Proof of Theorem iotam
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2236 . . . . 5 (𝑤 = 𝑧 → (𝑤𝐴𝑧𝐴))
21cbvexv 1916 . . . 4 (∃𝑤 𝑤𝐴 ↔ ∃𝑧 𝑧𝐴)
3 simprr 531 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝐴 = (℩𝑥𝜑))
43eqcomd 2181 . . . . . . 7 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → (℩𝑥𝜑) = 𝐴)
5 simprl 529 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝐴𝑉)
6 simpl 109 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝑧𝐴)
76, 3eleqtrd 2254 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ (℩𝑥𝜑))
8 eliotaeu 5197 . . . . . . . . 9 (𝑧 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
97, 8syl 14 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → ∃!𝑥𝜑)
10 iotam.1 . . . . . . . . 9 (𝑥 = 𝐴 → (𝜑𝜓))
1110iota2 5198 . . . . . . . 8 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
125, 9, 11syl2anc 411 . . . . . . 7 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
134, 12mpbird 167 . . . . . 6 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝜓)
1413ex 115 . . . . 5 (𝑧𝐴 → ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓))
1514exlimiv 1596 . . . 4 (∃𝑧 𝑧𝐴 → ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓))
162, 15sylbi 121 . . 3 (∃𝑤 𝑤𝐴 → ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓))
17163impib 1201 . 2 ((∃𝑤 𝑤𝐴𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓)
18173com12 1207 1 ((𝐴𝑉 ∧ ∃𝑤 𝑤𝐴𝐴 = (℩𝑥𝜑)) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1490  ∃!weu 2024  wcel 2146  cio 5168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-sn 3595  df-pr 3596  df-uni 3806  df-iota 5170
This theorem is referenced by:  sgrpidmndm  12696
  Copyright terms: Public domain W3C validator