| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotam | GIF version | ||
| Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
| Ref | Expression |
|---|---|
| iotam.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| iotam | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2257 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 2 | 1 | cbvexv 1933 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐴 ↔ ∃𝑧 𝑧 ∈ 𝐴) |
| 3 | simprr 531 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝐴 = (℩𝑥𝜑)) | |
| 4 | 3 | eqcomd 2202 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → (℩𝑥𝜑) = 𝐴) |
| 5 | simprl 529 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝐴 ∈ 𝑉) | |
| 6 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ 𝐴) | |
| 7 | 6, 3 | eleqtrd 2275 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ (℩𝑥𝜑)) |
| 8 | eliotaeu 5247 | . . . . . . . . 9 ⊢ (𝑧 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | |
| 9 | 7, 8 | syl 14 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → ∃!𝑥𝜑) |
| 10 | iotam.1 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 11 | 10 | iota2 5248 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| 12 | 5, 9, 11 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| 13 | 4, 12 | mpbird 167 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝜓) |
| 14 | 13 | ex 115 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
| 15 | 14 | exlimiv 1612 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
| 16 | 2, 15 | sylbi 121 | . . 3 ⊢ (∃𝑤 𝑤 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
| 17 | 16 | 3impib 1203 | . 2 ⊢ ((∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| 18 | 17 | 3com12 1209 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 ℩cio 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 |
| This theorem is referenced by: sgrpidmndm 13061 |
| Copyright terms: Public domain | W3C validator |