ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotam GIF version

Theorem iotam 5190
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.)
Hypothesis
Ref Expression
iotam.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iotam ((𝐴𝑉 ∧ ∃𝑤 𝑤𝐴𝐴 = (℩𝑥𝜑)) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑤,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑤)   𝑉(𝑥,𝑤)

Proof of Theorem iotam
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2231 . . . . 5 (𝑤 = 𝑧 → (𝑤𝐴𝑧𝐴))
21cbvexv 1911 . . . 4 (∃𝑤 𝑤𝐴 ↔ ∃𝑧 𝑧𝐴)
3 simprr 527 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝐴 = (℩𝑥𝜑))
43eqcomd 2176 . . . . . . 7 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → (℩𝑥𝜑) = 𝐴)
5 simprl 526 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝐴𝑉)
6 simpl 108 . . . . . . . . . 10 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝑧𝐴)
76, 3eleqtrd 2249 . . . . . . . . 9 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ (℩𝑥𝜑))
8 eliotaeu 5187 . . . . . . . . 9 (𝑧 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
97, 8syl 14 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → ∃!𝑥𝜑)
10 iotam.1 . . . . . . . . 9 (𝑥 = 𝐴 → (𝜑𝜓))
1110iota2 5188 . . . . . . . 8 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
125, 9, 11syl2anc 409 . . . . . . 7 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
134, 12mpbird 166 . . . . . 6 ((𝑧𝐴 ∧ (𝐴𝑉𝐴 = (℩𝑥𝜑))) → 𝜓)
1413ex 114 . . . . 5 (𝑧𝐴 → ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓))
1514exlimiv 1591 . . . 4 (∃𝑧 𝑧𝐴 → ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓))
162, 15sylbi 120 . . 3 (∃𝑤 𝑤𝐴 → ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓))
17163impib 1196 . 2 ((∃𝑤 𝑤𝐴𝐴𝑉𝐴 = (℩𝑥𝜑)) → 𝜓)
18173com12 1202 1 ((𝐴𝑉 ∧ ∃𝑤 𝑤𝐴𝐴 = (℩𝑥𝜑)) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  cio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  sgrpidmndm  12656
  Copyright terms: Public domain W3C validator