Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotam | GIF version |
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
Ref | Expression |
---|---|
iotam.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
iotam | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2231 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
2 | 1 | cbvexv 1911 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐴 ↔ ∃𝑧 𝑧 ∈ 𝐴) |
3 | simprr 527 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝐴 = (℩𝑥𝜑)) | |
4 | 3 | eqcomd 2176 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → (℩𝑥𝜑) = 𝐴) |
5 | simprl 526 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝐴 ∈ 𝑉) | |
6 | simpl 108 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ 𝐴) | |
7 | 6, 3 | eleqtrd 2249 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ (℩𝑥𝜑)) |
8 | eliotaeu 5187 | . . . . . . . . 9 ⊢ (𝑧 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | |
9 | 7, 8 | syl 14 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → ∃!𝑥𝜑) |
10 | iotam.1 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
11 | 10 | iota2 5188 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
12 | 5, 9, 11 | syl2anc 409 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
13 | 4, 12 | mpbird 166 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝜓) |
14 | 13 | ex 114 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
15 | 14 | exlimiv 1591 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
16 | 2, 15 | sylbi 120 | . . 3 ⊢ (∃𝑤 𝑤 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
17 | 16 | 3impib 1196 | . 2 ⊢ ((∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
18 | 17 | 3com12 1202 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∃wex 1485 ∃!weu 2019 ∈ wcel 2141 ℩cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 |
This theorem is referenced by: sgrpidmndm 12656 |
Copyright terms: Public domain | W3C validator |