Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotam | GIF version |
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is inhabited (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.) |
Ref | Expression |
---|---|
iotam.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
iotam | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2236 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
2 | 1 | cbvexv 1916 | . . . 4 ⊢ (∃𝑤 𝑤 ∈ 𝐴 ↔ ∃𝑧 𝑧 ∈ 𝐴) |
3 | simprr 531 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝐴 = (℩𝑥𝜑)) | |
4 | 3 | eqcomd 2181 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → (℩𝑥𝜑) = 𝐴) |
5 | simprl 529 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝐴 ∈ 𝑉) | |
6 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ 𝐴) | |
7 | 6, 3 | eleqtrd 2254 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝑧 ∈ (℩𝑥𝜑)) |
8 | eliotaeu 5197 | . . . . . . . . 9 ⊢ (𝑧 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | |
9 | 7, 8 | syl 14 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → ∃!𝑥𝜑) |
10 | iotam.1 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
11 | 10 | iota2 5198 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
12 | 5, 9, 11 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
13 | 4, 12 | mpbird 167 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑))) → 𝜓) |
14 | 13 | ex 115 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
15 | 14 | exlimiv 1596 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
16 | 2, 15 | sylbi 121 | . . 3 ⊢ (∃𝑤 𝑤 ∈ 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)) |
17 | 16 | 3impib 1201 | . 2 ⊢ ((∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
18 | 17 | 3com12 1207 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑤 𝑤 ∈ 𝐴 ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∃wex 1490 ∃!weu 2024 ∈ wcel 2146 ℩cio 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 df-iota 5170 |
This theorem is referenced by: sgrpidmndm 12696 |
Copyright terms: Public domain | W3C validator |