Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexg | GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3166 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 230 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 2729 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 4119 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 2786 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssexd 4122 difexg 4123 rabexg 4125 elssabg 4127 elpw2g 4135 abssexg 4161 snexg 4163 sess1 4315 sess2 4316 trsuc 4400 unexb 4420 abnexg 4424 uniexb 4451 xpexg 4718 riinint 4865 dmexg 4868 rnexg 4869 resexg 4924 resiexg 4929 imaexg 4958 exse2 4978 cnvexg 5141 coexg 5148 fabexg 5375 f1oabexg 5444 relrnfvex 5504 fvexg 5505 sefvex 5507 mptfvex 5571 mptexg 5710 ofres 6064 resfunexgALT 6076 cofunexg 6077 fnexALT 6079 f1dmex 6084 oprabexd 6095 mpoexxg 6178 tposexg 6226 frecabex 6366 erex 6525 mapex 6620 pmvalg 6625 elpmg 6630 elmapssres 6639 pmss12g 6641 ixpexgg 6688 ssdomg 6744 fiprc 6781 fival 6935 iccen 9942 shftfvalg 10760 shftfval 10763 toponsspwpwg 12660 tgval 12689 tgvalex 12690 eltg 12692 eltg2 12693 tgss 12703 basgen2 12721 bastop1 12723 topnex 12726 resttopon 12811 restabs 12815 lmfval 12832 cnrest 12875 txss12 12906 metrest 13146 dvbss 13294 dvcnp2cntop 13303 dvaddxxbr 13305 dvmulxxbr 13306 |
Copyright terms: Public domain | W3C validator |