![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexg | GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3204 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 4167 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 2821 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssexd 4170 difexg 4171 rabexg 4173 elssabg 4178 elpw2g 4186 abssexg 4212 snexg 4214 sess1 4369 sess2 4370 trsuc 4454 unexb 4474 abnexg 4478 uniexb 4505 xpexg 4774 riinint 4924 dmexg 4927 rnexg 4928 resexg 4983 resiexg 4988 imaexg 5020 exse2 5040 cnvexg 5204 coexg 5211 fabexg 5442 f1oabexg 5513 relrnfvex 5573 fvexg 5574 sefvex 5576 mptfvex 5644 mptexg 5784 ofres 6147 resfunexgALT 6162 cofunexg 6163 fnexALT 6165 f1dmex 6170 oprabexd 6181 mpoexxg 6265 tposexg 6313 frecabex 6453 erex 6613 mapex 6710 pmvalg 6715 elpmg 6720 elmapssres 6729 pmss12g 6731 ixpexgg 6778 ssdomg 6834 fiprc 6871 fival 7031 iccen 10075 wrdexb 10929 shftfvalg 10965 shftfval 10968 tgval 12876 tgvalex 12877 toponsspwpwg 14201 eltg 14231 eltg2 14232 tgss 14242 basgen2 14260 bastop1 14262 topnex 14265 resttopon 14350 restabs 14354 lmfval 14371 cnrest 14414 txss12 14445 metrest 14685 dvbss 14864 dvcnp2cntop 14878 dvaddxxbr 14880 dvmulxxbr 14881 elply2 14914 plyf 14916 plyss 14917 elplyr 14919 plyaddlem 14928 plymullem 14929 plyco 14937 |
Copyright terms: Public domain | W3C validator |