Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexg | GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3171 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 230 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 4126 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 2790 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssexd 4129 difexg 4130 rabexg 4132 elssabg 4134 elpw2g 4142 abssexg 4168 snexg 4170 sess1 4322 sess2 4323 trsuc 4407 unexb 4427 abnexg 4431 uniexb 4458 xpexg 4725 riinint 4872 dmexg 4875 rnexg 4876 resexg 4931 resiexg 4936 imaexg 4965 exse2 4985 cnvexg 5148 coexg 5155 fabexg 5385 f1oabexg 5454 relrnfvex 5514 fvexg 5515 sefvex 5517 mptfvex 5581 mptexg 5721 ofres 6075 resfunexgALT 6087 cofunexg 6088 fnexALT 6090 f1dmex 6095 oprabexd 6106 mpoexxg 6189 tposexg 6237 frecabex 6377 erex 6537 mapex 6632 pmvalg 6637 elpmg 6642 elmapssres 6651 pmss12g 6653 ixpexgg 6700 ssdomg 6756 fiprc 6793 fival 6947 iccen 9963 shftfvalg 10782 shftfval 10785 toponsspwpwg 12814 tgval 12843 tgvalex 12844 eltg 12846 eltg2 12847 tgss 12857 basgen2 12875 bastop1 12877 topnex 12880 resttopon 12965 restabs 12969 lmfval 12986 cnrest 13029 txss12 13060 metrest 13300 dvbss 13448 dvcnp2cntop 13457 dvaddxxbr 13459 dvmulxxbr 13460 |
Copyright terms: Public domain | W3C validator |