![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexg | GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3203 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 4166 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 2820 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssexd 4169 difexg 4170 rabexg 4172 elssabg 4177 elpw2g 4185 abssexg 4211 snexg 4213 sess1 4368 sess2 4369 trsuc 4453 unexb 4473 abnexg 4477 uniexb 4504 xpexg 4773 riinint 4923 dmexg 4926 rnexg 4927 resexg 4982 resiexg 4987 imaexg 5019 exse2 5039 cnvexg 5203 coexg 5210 fabexg 5441 f1oabexg 5512 relrnfvex 5572 fvexg 5573 sefvex 5575 mptfvex 5643 mptexg 5783 ofres 6145 resfunexgALT 6160 cofunexg 6161 fnexALT 6163 f1dmex 6168 oprabexd 6179 mpoexxg 6263 tposexg 6311 frecabex 6451 erex 6611 mapex 6708 pmvalg 6713 elpmg 6718 elmapssres 6727 pmss12g 6729 ixpexgg 6776 ssdomg 6832 fiprc 6869 fival 7029 iccen 10072 wrdexb 10926 shftfvalg 10962 shftfval 10965 tgval 12873 tgvalex 12874 toponsspwpwg 14190 eltg 14220 eltg2 14221 tgss 14231 basgen2 14249 bastop1 14251 topnex 14254 resttopon 14339 restabs 14343 lmfval 14360 cnrest 14403 txss12 14434 metrest 14674 dvbss 14839 dvcnp2cntop 14848 dvaddxxbr 14850 dvmulxxbr 14851 elply2 14881 plyf 14883 plyss 14884 elplyr 14886 plyaddlem 14895 plymullem 14896 |
Copyright terms: Public domain | W3C validator |