| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexg | GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3225 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 2779 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 4197 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 2838 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssexd 4200 difexg 4201 rabexg 4203 elssabg 4208 elpw2g 4216 abssexg 4242 snexg 4244 sess1 4402 sess2 4403 trsuc 4487 unexb 4507 abnexg 4511 uniexb 4538 xpexg 4807 riinint 4958 dmexg 4961 rnexg 4962 resexg 5018 resiexg 5023 imaexg 5055 exse2 5075 cnvexg 5239 coexg 5246 fabexg 5485 f1oabexg 5556 relrnfvex 5617 fvexg 5618 sefvex 5620 mptfvex 5688 mptexg 5832 ofres 6196 resfunexgALT 6216 cofunexg 6217 fnexALT 6219 f1dmex 6224 oprabexd 6235 mpoexxg 6319 tposexg 6367 frecabex 6507 erex 6667 mapex 6764 pmvalg 6769 elpmg 6774 elmapssres 6783 pmss12g 6785 ixpexgg 6832 ssdomg 6893 fiprc 6931 fival 7098 iccen 10163 wrdexb 11043 shftfvalg 11244 shftfval 11247 tgval 13209 tgvalex 13210 toponsspwpwg 14609 eltg 14639 eltg2 14640 tgss 14650 basgen2 14668 bastop1 14670 topnex 14673 resttopon 14758 restabs 14762 lmfval 14779 cnrest 14822 txss12 14853 metrest 15093 dvbss 15272 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 elply2 15322 plyf 15324 plyss 15325 elplyr 15327 plyaddlem 15336 plymullem 15337 plyco 15346 |
| Copyright terms: Public domain | W3C validator |