| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexg | GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3217 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 2775 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 4182 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 2833 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssexd 4185 difexg 4186 rabexg 4188 elssabg 4193 elpw2g 4201 abssexg 4227 snexg 4229 sess1 4385 sess2 4386 trsuc 4470 unexb 4490 abnexg 4494 uniexb 4521 xpexg 4790 riinint 4940 dmexg 4943 rnexg 4944 resexg 5000 resiexg 5005 imaexg 5037 exse2 5057 cnvexg 5221 coexg 5228 fabexg 5465 f1oabexg 5536 relrnfvex 5596 fvexg 5597 sefvex 5599 mptfvex 5667 mptexg 5811 ofres 6175 resfunexgALT 6195 cofunexg 6196 fnexALT 6198 f1dmex 6203 oprabexd 6214 mpoexxg 6298 tposexg 6346 frecabex 6486 erex 6646 mapex 6743 pmvalg 6748 elpmg 6753 elmapssres 6762 pmss12g 6764 ixpexgg 6811 ssdomg 6872 fiprc 6909 fival 7074 iccen 10130 wrdexb 11008 shftfvalg 11162 shftfval 11165 tgval 13127 tgvalex 13128 toponsspwpwg 14527 eltg 14557 eltg2 14558 tgss 14568 basgen2 14586 bastop1 14588 topnex 14591 resttopon 14676 restabs 14680 lmfval 14697 cnrest 14740 txss12 14771 metrest 15011 dvbss 15190 dvcnp2cntop 15204 dvaddxxbr 15206 dvmulxxbr 15207 elply2 15240 plyf 15242 plyss 15243 elplyr 15245 plyaddlem 15254 plymullem 15255 plyco 15264 |
| Copyright terms: Public domain | W3C validator |