| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexg | GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3208 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 4171 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 2824 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssexd 4174 difexg 4175 rabexg 4177 elssabg 4182 elpw2g 4190 abssexg 4216 snexg 4218 sess1 4373 sess2 4374 trsuc 4458 unexb 4478 abnexg 4482 uniexb 4509 xpexg 4778 riinint 4928 dmexg 4931 rnexg 4932 resexg 4987 resiexg 4992 imaexg 5024 exse2 5044 cnvexg 5208 coexg 5215 fabexg 5448 f1oabexg 5519 relrnfvex 5579 fvexg 5580 sefvex 5582 mptfvex 5650 mptexg 5790 ofres 6154 resfunexgALT 6174 cofunexg 6175 fnexALT 6177 f1dmex 6182 oprabexd 6193 mpoexxg 6277 tposexg 6325 frecabex 6465 erex 6625 mapex 6722 pmvalg 6727 elpmg 6732 elmapssres 6741 pmss12g 6743 ixpexgg 6790 ssdomg 6846 fiprc 6883 fival 7045 iccen 10100 wrdexb 10966 shftfvalg 11002 shftfval 11005 tgval 12966 tgvalex 12967 toponsspwpwg 14366 eltg 14396 eltg2 14397 tgss 14407 basgen2 14425 bastop1 14427 topnex 14430 resttopon 14515 restabs 14519 lmfval 14536 cnrest 14579 txss12 14610 metrest 14850 dvbss 15029 dvcnp2cntop 15043 dvaddxxbr 15045 dvmulxxbr 15046 elply2 15079 plyf 15081 plyss 15082 elplyr 15084 plyaddlem 15093 plymullem 15094 plyco 15103 |
| Copyright terms: Public domain | W3C validator |