| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexg | GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3248 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
| 3 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 4221 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
| 5 | 2, 4 | vtoclg 2861 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssexd 4224 difexg 4225 rabexg 4227 elssabg 4232 elpw2g 4240 abssexg 4266 snexg 4268 sess1 4428 sess2 4429 trsuc 4513 unexb 4533 abnexg 4537 uniexb 4564 xpexg 4833 riinint 4985 dmexg 4988 rnexg 4989 resexg 5045 resiexg 5050 imaexg 5082 exse2 5102 cnvexg 5266 coexg 5273 fabexg 5513 f1oabexg 5584 relrnfvex 5645 fvexg 5646 sefvex 5648 mptfvex 5720 mptexg 5864 ofres 6233 resfunexgALT 6253 cofunexg 6254 fnexALT 6256 f1dmex 6261 oprabexd 6272 mpoexxg 6356 tposexg 6404 frecabex 6544 erex 6704 mapex 6801 pmvalg 6806 elpmg 6811 elmapssres 6820 pmss12g 6822 ixpexgg 6869 ssdomg 6930 fiprc 6968 fival 7137 iccen 10202 wrdexb 11083 shftfvalg 11329 shftfval 11332 tgval 13295 tgvalex 13296 toponsspwpwg 14696 eltg 14726 eltg2 14727 tgss 14737 basgen2 14755 bastop1 14757 topnex 14760 resttopon 14845 restabs 14849 lmfval 14867 cnrest 14909 txss12 14940 metrest 15180 dvbss 15359 dvcnp2cntop 15373 dvaddxxbr 15375 dvmulxxbr 15376 elply2 15409 plyf 15411 plyss 15412 elplyr 15414 plyaddlem 15423 plymullem 15424 plyco 15433 |
| Copyright terms: Public domain | W3C validator |