| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssexg | GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq2 3207 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) | 
| 3 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 4170 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) | 
| 5 | 2, 4 | vtoclg 2824 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) | 
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssexd 4173 difexg 4174 rabexg 4176 elssabg 4181 elpw2g 4189 abssexg 4215 snexg 4217 sess1 4372 sess2 4373 trsuc 4457 unexb 4477 abnexg 4481 uniexb 4508 xpexg 4777 riinint 4927 dmexg 4930 rnexg 4931 resexg 4986 resiexg 4991 imaexg 5023 exse2 5043 cnvexg 5207 coexg 5214 fabexg 5445 f1oabexg 5516 relrnfvex 5576 fvexg 5577 sefvex 5579 mptfvex 5647 mptexg 5787 ofres 6150 resfunexgALT 6165 cofunexg 6166 fnexALT 6168 f1dmex 6173 oprabexd 6184 mpoexxg 6268 tposexg 6316 frecabex 6456 erex 6616 mapex 6713 pmvalg 6718 elpmg 6723 elmapssres 6732 pmss12g 6734 ixpexgg 6781 ssdomg 6837 fiprc 6874 fival 7036 iccen 10081 wrdexb 10947 shftfvalg 10983 shftfval 10986 tgval 12933 tgvalex 12934 toponsspwpwg 14258 eltg 14288 eltg2 14289 tgss 14299 basgen2 14317 bastop1 14319 topnex 14322 resttopon 14407 restabs 14411 lmfval 14428 cnrest 14471 txss12 14502 metrest 14742 dvbss 14921 dvcnp2cntop 14935 dvaddxxbr 14937 dvmulxxbr 14938 elply2 14971 plyf 14973 plyss 14974 elplyr 14976 plyaddlem 14985 plymullem 14986 plyco 14995 | 
| Copyright terms: Public domain | W3C validator |