![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexg | GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3071 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 230 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 2644 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 4005 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 2701 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 Vcvv 2641 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-in 3027 df-ss 3034 |
This theorem is referenced by: ssexd 4008 difexg 4009 rabexg 4011 elssabg 4013 elpw2g 4021 abssexg 4046 snexg 4048 sess1 4197 sess2 4198 trsuc 4282 unexb 4301 abnexg 4305 uniexb 4332 xpexg 4591 riinint 4736 dmexg 4739 rnexg 4740 resexg 4795 resiexg 4800 imaexg 4829 exse2 4849 cnvexg 5012 coexg 5019 fabexg 5246 f1oabexg 5313 relrnfvex 5371 fvexg 5372 sefvex 5374 mptfvex 5438 mptexg 5577 ofres 5927 resfunexgALT 5939 cofunexg 5940 fnexALT 5942 f1dmex 5945 oprabexd 5956 mpoexxg 6038 tposexg 6085 frecabex 6225 erex 6383 mapex 6478 pmvalg 6483 elpmg 6488 elmapssres 6497 pmss12g 6499 ixpexgg 6546 ssdomg 6602 fiprc 6639 shftfvalg 10431 shftfval 10434 toponsspwpwg 11971 tgval 12000 tgvalex 12001 eltg 12003 eltg2 12004 tgss 12014 basgen2 12032 bastop1 12034 topnex 12037 resttopon 12122 restabs 12126 lmfval 12143 cnrest 12185 txss12 12216 metrest 12434 dvbss 12527 |
Copyright terms: Public domain | W3C validator |