ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsucg GIF version

Theorem elsucg 4469
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
elsucg (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem elsucg
StepHypRef Expression
1 df-suc 4436 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2274 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3322 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 184 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsng 3658 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
65orbi2d 792 . 2 (𝐴𝑉 → ((𝐴𝐵𝐴 ∈ {𝐵}) ↔ (𝐴𝐵𝐴 = 𝐵)))
74, 6bitrid 192 1 (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710   = wceq 1373  wcel 2178  cun 3172  {csn 3643  suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-suc 4436
This theorem is referenced by:  elsuc  4471  elelsuc  4474  sucidg  4481  onsucelsucr  4574  onsucsssucexmid  4593  suc11g  4623  nnsssuc  6611  nlt1pig  7489  bj-peano4  16090
  Copyright terms: Public domain W3C validator