ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsucg GIF version

Theorem elsucg 4194
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
elsucg (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem elsucg
StepHypRef Expression
1 df-suc 4161 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2149 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3125 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 182 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsng 3437 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
65orbi2d 737 . 2 (𝐴𝑉 → ((𝐴𝐵𝐴 ∈ {𝐵}) ↔ (𝐴𝐵𝐴 = 𝐵)))
74, 6syl5bb 190 1 (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wo 662   = wceq 1285  wcel 1434  cun 2982  {csn 3422  suc csuc 4155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-un 2988  df-sn 3428  df-suc 4161
This theorem is referenced by:  elsuc  4196  elelsuc  4199  sucidg  4206  onsucelsucr  4287  onsucsssucexmid  4305  suc11g  4335  nlt1pig  6801  bj-peano4  11191
  Copyright terms: Public domain W3C validator