| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topopn | GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3217 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 14548 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2293 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ∪ cuni 3856 Topctop 14544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-uni 3857 df-top 14545 |
| This theorem is referenced by: toponmax 14572 cldval 14646 ntrfval 14647 clsfval 14648 iscld 14650 ntrval 14657 clsval 14658 0cld 14659 ntrtop 14675 neifval 14687 neif 14688 neival 14690 isnei 14691 tpnei 14707 cnrest 14782 txcn 14822 dvply1 15312 |
| Copyright terms: Public domain | W3C validator |