ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn GIF version

Theorem topopn 14422
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
topopn (𝐽 ∈ Top → 𝑋𝐽)

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2 𝑋 = 𝐽
2 ssid 3212 . . 3 𝐽𝐽
3 uniopn 14415 . . 3 ((𝐽 ∈ Top ∧ 𝐽𝐽) → 𝐽𝐽)
42, 3mpan2 425 . 2 (𝐽 ∈ Top → 𝐽𝐽)
51, 4eqeltrid 2291 1 (𝐽 ∈ Top → 𝑋𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wss 3165   cuni 3849  Topctop 14411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-uni 3850  df-top 14412
This theorem is referenced by:  toponmax  14439  cldval  14513  ntrfval  14514  clsfval  14515  iscld  14517  ntrval  14524  clsval  14525  0cld  14526  ntrtop  14542  neifval  14554  neif  14555  neival  14557  isnei  14558  tpnei  14574  cnrest  14649  txcn  14689  dvply1  15179
  Copyright terms: Public domain W3C validator