Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topopn | GIF version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid 3162 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn 12639 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
4 | 2, 3 | mpan2 422 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 1, 4 | eqeltrid 2253 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 ∪ cuni 3789 Topctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 df-top 12636 |
This theorem is referenced by: toponmax 12663 cldval 12739 ntrfval 12740 clsfval 12741 iscld 12743 ntrval 12750 clsval 12751 0cld 12752 ntrtop 12768 neifval 12780 neif 12781 neival 12783 isnei 12784 tpnei 12800 cnrest 12875 txcn 12915 |
Copyright terms: Public domain | W3C validator |