| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topopn | GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3212 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 14444 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2291 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ∪ cuni 3849 Topctop 14440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-uni 3850 df-top 14441 |
| This theorem is referenced by: toponmax 14468 cldval 14542 ntrfval 14543 clsfval 14544 iscld 14546 ntrval 14553 clsval 14554 0cld 14555 ntrtop 14571 neifval 14583 neif 14584 neival 14586 isnei 14587 tpnei 14603 cnrest 14678 txcn 14718 dvply1 15208 |
| Copyright terms: Public domain | W3C validator |