| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topopn | GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3212 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 14415 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2291 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ∪ cuni 3849 Topctop 14411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-uni 3850 df-top 14412 |
| This theorem is referenced by: toponmax 14439 cldval 14513 ntrfval 14514 clsfval 14515 iscld 14517 ntrval 14524 clsval 14525 0cld 14526 ntrtop 14542 neifval 14554 neif 14555 neival 14557 isnei 14558 tpnei 14574 cnrest 14649 txcn 14689 dvply1 15179 |
| Copyright terms: Public domain | W3C validator |