ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn GIF version

Theorem topopn 12646
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
topopn (𝐽 ∈ Top → 𝑋𝐽)

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2 𝑋 = 𝐽
2 ssid 3162 . . 3 𝐽𝐽
3 uniopn 12639 . . 3 ((𝐽 ∈ Top ∧ 𝐽𝐽) → 𝐽𝐽)
42, 3mpan2 422 . 2 (𝐽 ∈ Top → 𝐽𝐽)
51, 4eqeltrid 2253 1 (𝐽 ∈ Top → 𝑋𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wss 3116   cuni 3789  Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-top 12636
This theorem is referenced by:  toponmax  12663  cldval  12739  ntrfval  12740  clsfval  12741  iscld  12743  ntrval  12750  clsval  12751  0cld  12752  ntrtop  12768  neifval  12780  neif  12781  neival  12783  isnei  12784  tpnei  12800  cnrest  12875  txcn  12915
  Copyright terms: Public domain W3C validator