| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtrdi 3272 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iunpw 4571 iotanul 5294 iotass 5296 tfrlem9 6471 tfrlemibfn 6480 tfrlemiubacc 6482 tfrlemi14d 6485 tfr1onlemssrecs 6491 tfr1onlemres 6501 tfrcllemres 6514 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 uznnssnn 9780 pfxccatpfx2 11277 shftfvalg 11337 shftfval 11340 clim2prod 12058 dvdsrvald 14065 dvdsrex 14070 eltopss 14691 difopn 14790 tgrest 14851 txuni2 14938 tgioo 15236 plycoeid3 15439 |
| Copyright terms: Public domain | W3C validator |