Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2158 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtrdi 3172 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: iunpw 4434 iotanul 5143 iotass 5145 tfrlem9 6256 tfrlemibfn 6265 tfrlemiubacc 6267 tfrlemi14d 6270 tfr1onlemssrecs 6276 tfr1onlemres 6286 tfrcllemres 6299 exmidfodomrlemr 7116 exmidfodomrlemrALT 7117 uznnssnn 9467 shftfvalg 10695 shftfval 10698 clim2prod 11413 eltopss 12346 difopn 12447 tgrest 12508 txuni2 12595 tgioo 12885 |
Copyright terms: Public domain | W3C validator |