| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2213 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtrdi 3252 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: iunpw 4548 iotanul 5270 iotass 5272 tfrlem9 6435 tfrlemibfn 6444 tfrlemiubacc 6446 tfrlemi14d 6449 tfr1onlemssrecs 6455 tfr1onlemres 6465 tfrcllemres 6478 exmidfodomrlemr 7348 exmidfodomrlemrALT 7349 uznnssnn 9740 pfxccatpfx2 11235 shftfvalg 11295 shftfval 11298 clim2prod 12016 reldvdsrsrg 14021 dvdsrvald 14022 dvdsrex 14027 eltopss 14648 difopn 14747 tgrest 14808 txuni2 14895 tgioo 15193 plycoeid3 15396 |
| Copyright terms: Public domain | W3C validator |