Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtrdi 3195 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: iunpw 4465 iotanul 5175 iotass 5177 tfrlem9 6298 tfrlemibfn 6307 tfrlemiubacc 6309 tfrlemi14d 6312 tfr1onlemssrecs 6318 tfr1onlemres 6328 tfrcllemres 6341 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 uznnssnn 9536 shftfvalg 10782 shftfval 10785 clim2prod 11502 eltopss 12801 difopn 12902 tgrest 12963 txuni2 13050 tgioo 13340 |
Copyright terms: Public domain | W3C validator |