| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2210 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtrdi 3242 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: iunpw 4531 iotanul 5252 iotass 5254 tfrlem9 6412 tfrlemibfn 6421 tfrlemiubacc 6423 tfrlemi14d 6426 tfr1onlemssrecs 6432 tfr1onlemres 6442 tfrcllemres 6455 exmidfodomrlemr 7317 exmidfodomrlemrALT 7318 uznnssnn 9705 shftfvalg 11173 shftfval 11176 clim2prod 11894 reldvdsrsrg 13898 dvdsrvald 13899 dvdsrex 13904 eltopss 14525 difopn 14624 tgrest 14685 txuni2 14772 tgioo 15070 plycoeid3 15273 |
| Copyright terms: Public domain | W3C validator |