Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtrdi 3190 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: iunpw 4458 iotanul 5168 iotass 5170 tfrlem9 6287 tfrlemibfn 6296 tfrlemiubacc 6298 tfrlemi14d 6301 tfr1onlemssrecs 6307 tfr1onlemres 6317 tfrcllemres 6330 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 uznnssnn 9515 shftfvalg 10760 shftfval 10763 clim2prod 11480 eltopss 12647 difopn 12748 tgrest 12809 txuni2 12896 tgioo 13186 |
Copyright terms: Public domain | W3C validator |