ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrdi GIF version

Theorem sseqtrrdi 3233
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrdi.1 (𝜑𝐴𝐵)
sseqtrrdi.2 𝐶 = 𝐵
Assertion
Ref Expression
sseqtrrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrrdi
StepHypRef Expression
1 sseqtrrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrrdi.2 . . 3 𝐶 = 𝐵
32eqcomi 2200 . 2 𝐵 = 𝐶
41, 3sseqtrdi 3232 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  iunpw  4516  iotanul  5235  iotass  5237  tfrlem9  6386  tfrlemibfn  6395  tfrlemiubacc  6397  tfrlemi14d  6400  tfr1onlemssrecs  6406  tfr1onlemres  6416  tfrcllemres  6429  exmidfodomrlemr  7283  exmidfodomrlemrALT  7284  uznnssnn  9670  shftfvalg  11002  shftfval  11005  clim2prod  11723  reldvdsrsrg  13726  dvdsrvald  13727  dvdsrex  13732  eltopss  14353  difopn  14452  tgrest  14513  txuni2  14600  tgioo  14898  plycoeid3  15101
  Copyright terms: Public domain W3C validator