ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrdi GIF version

Theorem sseqtrrdi 3273
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrdi.1 (𝜑𝐴𝐵)
sseqtrrdi.2 𝐶 = 𝐵
Assertion
Ref Expression
sseqtrrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrrdi
StepHypRef Expression
1 sseqtrrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrrdi.2 . . 3 𝐶 = 𝐵
32eqcomi 2233 . 2 𝐵 = 𝐶
41, 3sseqtrdi 3272 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  iunpw  4571  iotanul  5294  iotass  5296  tfrlem9  6471  tfrlemibfn  6480  tfrlemiubacc  6482  tfrlemi14d  6485  tfr1onlemssrecs  6491  tfr1onlemres  6501  tfrcllemres  6514  exmidfodomrlemr  7388  exmidfodomrlemrALT  7389  uznnssnn  9780  pfxccatpfx2  11277  shftfvalg  11337  shftfval  11340  clim2prod  12058  dvdsrvald  14065  dvdsrex  14070  eltopss  14691  difopn  14790  tgrest  14851  txuni2  14938  tgioo  15236  plycoeid3  15439
  Copyright terms: Public domain W3C validator