| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrdi.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrdi.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtrdi 3232 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iunpw 4516 iotanul 5235 iotass 5237 tfrlem9 6386 tfrlemibfn 6395 tfrlemiubacc 6397 tfrlemi14d 6400 tfr1onlemssrecs 6406 tfr1onlemres 6416 tfrcllemres 6429 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 uznnssnn 9670 shftfvalg 11002 shftfval 11005 clim2prod 11723 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrex 13732 eltopss 14353 difopn 14452 tgrest 14513 txuni2 14600 tgioo 14898 plycoeid3 15101 |
| Copyright terms: Public domain | W3C validator |