ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrdi GIF version

Theorem sseqtrrdi 3173
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrdi.1 (𝜑𝐴𝐵)
sseqtrrdi.2 𝐶 = 𝐵
Assertion
Ref Expression
sseqtrrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrrdi
StepHypRef Expression
1 sseqtrrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrrdi.2 . . 3 𝐶 = 𝐵
32eqcomi 2158 . 2 𝐵 = 𝐶
41, 3sseqtrdi 3172 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wss 3098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-in 3104  df-ss 3111
This theorem is referenced by:  iunpw  4434  iotanul  5143  iotass  5145  tfrlem9  6256  tfrlemibfn  6265  tfrlemiubacc  6267  tfrlemi14d  6270  tfr1onlemssrecs  6276  tfr1onlemres  6286  tfrcllemres  6299  exmidfodomrlemr  7116  exmidfodomrlemrALT  7117  uznnssnn  9467  shftfvalg  10695  shftfval  10698  clim2prod  11413  eltopss  12346  difopn  12447  tgrest  12508  txuni2  12595  tgioo  12885
  Copyright terms: Public domain W3C validator