ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneiss GIF version

Theorem opnneiss 12364
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
Assertion
Ref Expression
opnneiss ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem opnneiss
StepHypRef Expression
1 simp3 984 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑆𝑁)
2 eqid 2140 . . . . 5 𝐽 = 𝐽
32eltopss 12213 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁 𝐽)
4 sstr 3109 . . . . 5 ((𝑆𝑁𝑁 𝐽) → 𝑆 𝐽)
54ancoms 266 . . . 4 ((𝑁 𝐽𝑆𝑁) → 𝑆 𝐽)
63, 5stoic3 1408 . . 3 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑆 𝐽)
72opnneissb 12361 . . 3 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆 𝐽) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
86, 7syld3an3 1262 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
91, 8mpbid 146 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 963  wcel 1481  wss 3075   cuni 3743  cfv 5130  Topctop 12201  neicnei 12344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-top 12202  df-nei 12345
This theorem is referenced by:  opnneip  12365  tpnei  12366  topssnei  12368  opnneiid  12370  neissex  12371
  Copyright terms: Public domain W3C validator