| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opnneiss | GIF version | ||
| Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.) |
| Ref | Expression |
|---|---|
| opnneiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1023 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ 𝑁) | |
| 2 | eqid 2229 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | eltopss 14677 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽) → 𝑁 ⊆ ∪ 𝐽) |
| 4 | sstr 3232 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑁 ∧ 𝑁 ⊆ ∪ 𝐽) → 𝑆 ⊆ ∪ 𝐽) | |
| 5 | 4 | ancoms 268 | . . . 4 ⊢ ((𝑁 ⊆ ∪ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
| 6 | 3, 5 | stoic3 1473 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑆 ⊆ ∪ 𝐽) |
| 7 | 2 | opnneissb 14823 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| 8 | 6, 7 | syld3an3 1316 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| 9 | 1, 8 | mpbid 147 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 ∈ wcel 2200 ⊆ wss 3197 ∪ cuni 3887 ‘cfv 5317 Topctop 14665 neicnei 14806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-top 14666 df-nei 14807 |
| This theorem is referenced by: opnneip 14827 tpnei 14828 topssnei 14830 opnneiid 14832 neissex 14833 |
| Copyright terms: Public domain | W3C validator |