ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnssneib GIF version

Theorem opnssneib 14392
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnssneib ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnssneib
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → 𝑁𝑋)
2 sseq2 3207 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑆𝑔𝑆𝑆))
3 sseq1 3206 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑔𝑁𝑆𝑁))
42, 3anbi12d 473 . . . . . . . . 9 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑆𝑆𝑁)))
5 ssid 3203 . . . . . . . . . 10 𝑆𝑆
65biantrur 303 . . . . . . . . 9 (𝑆𝑁 ↔ (𝑆𝑆𝑆𝑁))
74, 6bitr4di 198 . . . . . . . 8 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ 𝑆𝑁))
87rspcev 2868 . . . . . . 7 ((𝑆𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
98adantlr 477 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
101, 9jca 306 . . . . 5 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
1110ex 115 . . . 4 ((𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
12113adant1 1017 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
13 neips.1 . . . . . 6 𝑋 = 𝐽
1413eltopss 14245 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
1513isnei 14380 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1614, 15syldan 282 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
17163adant3 1019 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1812, 17sylibrd 169 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
19 ssnei 14387 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
2019ex 115 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
21203ad2ant1 1020 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
2218, 21impbid 129 1 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wrex 2476  wss 3157   cuni 3839  cfv 5258  Topctop 14233  neicnei 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-top 14234  df-nei 14375
This theorem is referenced by:  neissex  14401
  Copyright terms: Public domain W3C validator