Step | Hyp | Ref
| Expression |
1 | | simplr 528 |
. . . . . 6
β’ (((π β π½ β§ π β π) β§ π β π) β π β π) |
2 | | sseq2 3180 |
. . . . . . . . . 10
β’ (π = π β (π β π β π β π)) |
3 | | sseq1 3179 |
. . . . . . . . . 10
β’ (π = π β (π β π β π β π)) |
4 | 2, 3 | anbi12d 473 |
. . . . . . . . 9
β’ (π = π β ((π β π β§ π β π) β (π β π β§ π β π))) |
5 | | ssid 3176 |
. . . . . . . . . 10
β’ π β π |
6 | 5 | biantrur 303 |
. . . . . . . . 9
β’ (π β π β (π β π β§ π β π)) |
7 | 4, 6 | bitr4di 198 |
. . . . . . . 8
β’ (π = π β ((π β π β§ π β π) β π β π)) |
8 | 7 | rspcev 2842 |
. . . . . . 7
β’ ((π β π½ β§ π β π) β βπ β π½ (π β π β§ π β π)) |
9 | 8 | adantlr 477 |
. . . . . 6
β’ (((π β π½ β§ π β π) β§ π β π) β βπ β π½ (π β π β§ π β π)) |
10 | 1, 9 | jca 306 |
. . . . 5
β’ (((π β π½ β§ π β π) β§ π β π) β (π β π β§ βπ β π½ (π β π β§ π β π))) |
11 | 10 | ex 115 |
. . . 4
β’ ((π β π½ β§ π β π) β (π β π β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 11 | 3adant1 1015 |
. . 3
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | | neips.1 |
. . . . . 6
β’ π = βͺ
π½ |
14 | 13 | eltopss 13512 |
. . . . 5
β’ ((π½ β Top β§ π β π½) β π β π) |
15 | 13 | isnei 13647 |
. . . . 5
β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
16 | 14, 15 | syldan 282 |
. . . 4
β’ ((π½ β Top β§ π β π½) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
17 | 16 | 3adant3 1017 |
. . 3
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
18 | 12, 17 | sylibrd 169 |
. 2
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β π β ((neiβπ½)βπ))) |
19 | | ssnei 13654 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
20 | 19 | ex 115 |
. . 3
β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π)) |
21 | 20 | 3ad2ant1 1018 |
. 2
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β ((neiβπ½)βπ) β π β π)) |
22 | 18, 21 | impbid 129 |
1
β’ ((π½ β Top β§ π β π½ β§ π β π) β (π β π β π β ((neiβπ½)βπ))) |