ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnssneib GIF version

Theorem opnssneib 12950
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnssneib ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnssneib
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simplr 525 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → 𝑁𝑋)
2 sseq2 3171 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑆𝑔𝑆𝑆))
3 sseq1 3170 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑔𝑁𝑆𝑁))
42, 3anbi12d 470 . . . . . . . . 9 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑆𝑆𝑁)))
5 ssid 3167 . . . . . . . . . 10 𝑆𝑆
65biantrur 301 . . . . . . . . 9 (𝑆𝑁 ↔ (𝑆𝑆𝑆𝑁))
74, 6bitr4di 197 . . . . . . . 8 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ 𝑆𝑁))
87rspcev 2834 . . . . . . 7 ((𝑆𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
98adantlr 474 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
101, 9jca 304 . . . . 5 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
1110ex 114 . . . 4 ((𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
12113adant1 1010 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
13 neips.1 . . . . . 6 𝑋 = 𝐽
1413eltopss 12801 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
1513isnei 12938 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1614, 15syldan 280 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
17163adant3 1012 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1812, 17sylibrd 168 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
19 ssnei 12945 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
2019ex 114 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
21203ad2ant1 1013 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
2218, 21impbid 128 1 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449  wss 3121   cuni 3796  cfv 5198  Topctop 12789  neicnei 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-nei 12933
This theorem is referenced by:  neissex  12959
  Copyright terms: Public domain W3C validator