ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnssneib GIF version

Theorem opnssneib 13659
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
opnssneib ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 ↔ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)))

Proof of Theorem opnssneib
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) ∧ 𝑆 βŠ† 𝑁) β†’ 𝑁 βŠ† 𝑋)
2 sseq2 3180 . . . . . . . . . 10 (𝑔 = 𝑆 β†’ (𝑆 βŠ† 𝑔 ↔ 𝑆 βŠ† 𝑆))
3 sseq1 3179 . . . . . . . . . 10 (𝑔 = 𝑆 β†’ (𝑔 βŠ† 𝑁 ↔ 𝑆 βŠ† 𝑁))
42, 3anbi12d 473 . . . . . . . . 9 (𝑔 = 𝑆 β†’ ((𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁) ↔ (𝑆 βŠ† 𝑆 ∧ 𝑆 βŠ† 𝑁)))
5 ssid 3176 . . . . . . . . . 10 𝑆 βŠ† 𝑆
65biantrur 303 . . . . . . . . 9 (𝑆 βŠ† 𝑁 ↔ (𝑆 βŠ† 𝑆 ∧ 𝑆 βŠ† 𝑁))
74, 6bitr4di 198 . . . . . . . 8 (𝑔 = 𝑆 β†’ ((𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁) ↔ 𝑆 βŠ† 𝑁))
87rspcev 2842 . . . . . . 7 ((𝑆 ∈ 𝐽 ∧ 𝑆 βŠ† 𝑁) β†’ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))
98adantlr 477 . . . . . 6 (((𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) ∧ 𝑆 βŠ† 𝑁) β†’ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))
101, 9jca 306 . . . . 5 (((𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) ∧ 𝑆 βŠ† 𝑁) β†’ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)))
1110ex 115 . . . 4 ((𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 β†’ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
12113adant1 1015 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 β†’ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
13 neips.1 . . . . . 6 𝑋 = βˆͺ 𝐽
1413eltopss 13512 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) β†’ 𝑆 βŠ† 𝑋)
1513isnei 13647 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
1614, 15syldan 282 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
17163adant3 1017 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
1812, 17sylibrd 169 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)))
19 ssnei 13654 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 βŠ† 𝑁)
2019ex 115 . . 3 (𝐽 ∈ Top β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) β†’ 𝑆 βŠ† 𝑁))
21203ad2ant1 1018 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) β†’ 𝑆 βŠ† 𝑁))
2218, 21impbid 129 1 ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 ↔ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456   βŠ† wss 3130  βˆͺ cuni 3810  β€˜cfv 5217  Topctop 13500  neicnei 13641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-top 13501  df-nei 13642
This theorem is referenced by:  neissex  13668
  Copyright terms: Public domain W3C validator