ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnssneib GIF version

Theorem opnssneib 14795
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnssneib ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnssneib
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → 𝑁𝑋)
2 sseq2 3228 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑆𝑔𝑆𝑆))
3 sseq1 3227 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑔𝑁𝑆𝑁))
42, 3anbi12d 473 . . . . . . . . 9 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑆𝑆𝑁)))
5 ssid 3224 . . . . . . . . . 10 𝑆𝑆
65biantrur 303 . . . . . . . . 9 (𝑆𝑁 ↔ (𝑆𝑆𝑆𝑁))
74, 6bitr4di 198 . . . . . . . 8 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ 𝑆𝑁))
87rspcev 2887 . . . . . . 7 ((𝑆𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
98adantlr 477 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
101, 9jca 306 . . . . 5 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
1110ex 115 . . . 4 ((𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
12113adant1 1020 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
13 neips.1 . . . . . 6 𝑋 = 𝐽
1413eltopss 14648 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
1513isnei 14783 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1614, 15syldan 282 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
17163adant3 1022 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1812, 17sylibrd 169 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
19 ssnei 14790 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
2019ex 115 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
21203ad2ant1 1023 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
2218, 21impbid 129 1 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wrex 2489  wss 3177   cuni 3867  cfv 5294  Topctop 14636  neicnei 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-top 14637  df-nei 14778
This theorem is referenced by:  neissex  14804
  Copyright terms: Public domain W3C validator