| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . . . 6
⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → 𝑁 ⊆ 𝑋) |
| 2 | | sseq2 3207 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑆 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑆)) |
| 3 | | sseq1 3206 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑆 → (𝑔 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁)) |
| 4 | 2, 3 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁))) |
| 5 | | ssid 3203 |
. . . . . . . . . 10
⊢ 𝑆 ⊆ 𝑆 |
| 6 | 5 | biantrur 303 |
. . . . . . . . 9
⊢ (𝑆 ⊆ 𝑁 ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁)) |
| 7 | 4, 6 | bitr4di 198 |
. . . . . . . 8
⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ 𝑆 ⊆ 𝑁)) |
| 8 | 7 | rspcev 2868 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
| 9 | 8 | adantlr 477 |
. . . . . 6
⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
| 10 | 1, 9 | jca 306 |
. . . . 5
⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
| 11 | 10 | ex 115 |
. . . 4
⊢ ((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 12 | 11 | 3adant1 1017 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 13 | | neips.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
| 14 | 13 | eltopss 14245 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
| 15 | 13 | isnei 14380 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 16 | 14, 15 | syldan 282 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 17 | 16 | 3adant3 1019 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 18 | 12, 17 | sylibrd 169 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| 19 | | ssnei 14387 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) |
| 20 | 19 | ex 115 |
. . 3
⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
| 21 | 20 | 3ad2ant1 1020 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
| 22 | 18, 21 | impbid 129 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |