Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnclima GIF version

Theorem cnclima 12467
 Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2141 . . . . . 6 𝐽 = 𝐽
2 eqid 2141 . . . . . 6 𝐾 = 𝐾
31, 2cnf 12448 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
43adantr 274 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹: 𝐽 𝐾)
5 ffun 5287 . . . . . 6 (𝐹: 𝐽 𝐾 → Fun 𝐹)
6 funcnvcnv 5194 . . . . . 6 (Fun 𝐹 → Fun 𝐹)
7 imadif 5215 . . . . . 6 (Fun 𝐹 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
85, 6, 73syl 17 . . . . 5 (𝐹: 𝐽 𝐾 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
9 fimacnv 5561 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
109difeq1d 3200 . . . . 5 (𝐹: 𝐽 𝐾 → ((𝐹 𝐾) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
118, 10eqtr2d 2175 . . . 4 (𝐹: 𝐽 𝐾 → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
124, 11syl 14 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
132cldopn 12351 . . . 4 (𝐴 ∈ (Clsd‘𝐾) → ( 𝐾𝐴) ∈ 𝐾)
14 cnima 12464 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ( 𝐾𝐴) ∈ 𝐾) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1513, 14sylan2 284 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1612, 15eqeltrd 2218 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽)
17 cntop1 12445 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1817adantr 274 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top)
19 cnvimass 4914 . . . 4 (𝐹𝐴) ⊆ dom 𝐹
2019, 4fssdm 5299 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ⊆ 𝐽)
211iscld2 12348 . . 3 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2218, 20, 21syl2anc 409 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2316, 22mpbird 166 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2112   ∖ cdif 3075   ⊆ wss 3078  ∪ cuni 3746  ◡ccnv 4550   “ cima 4554  Fun wfun 5129  ⟶wf 5131  ‘cfv 5135  (class class class)co 5786  Topctop 12239  Clsdccld 12336   Cn ccn 12429 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-ral 2423  df-rex 2424  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-iun 3825  df-br 3940  df-opab 4000  df-mpt 4001  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-fv 5143  df-ov 5789  df-oprab 5790  df-mpo 5791  df-1st 6050  df-2nd 6051  df-map 6556  df-top 12240  df-topon 12253  df-cld 12339  df-cn 12432 This theorem is referenced by:  hmeocld  12556
 Copyright terms: Public domain W3C validator