| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnclima | GIF version | ||
| Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnclima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2205 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | cnf 14676 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 5 | ffun 5428 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Fun 𝐹) | |
| 6 | funcnvcnv 5333 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 7 | imadif 5354 | . . . . . 6 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) | |
| 8 | 5, 6, 7 | 3syl 17 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) |
| 9 | fimacnv 5709 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ ∪ 𝐾) = ∪ 𝐽) | |
| 10 | 9 | difeq1d 3290 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝐴))) |
| 11 | 8, 10 | eqtr2d 2239 | . . . 4 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
| 12 | 4, 11 | syl 14 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
| 13 | 2 | cldopn 14579 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐾) → (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) |
| 14 | cnima 14692 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) | |
| 15 | 13, 14 | sylan2 286 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) |
| 16 | 12, 15 | eqeltrd 2282 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽) |
| 17 | cntop1 14673 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top) |
| 19 | cnvimass 5045 | . . . 4 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
| 20 | 19, 4 | fssdm 5440 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) |
| 21 | 1 | iscld2 14576 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 22 | 18, 20, 21 | syl2anc 411 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 23 | 16, 22 | mpbird 167 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∖ cdif 3163 ⊆ wss 3166 ∪ cuni 3850 ◡ccnv 4674 “ cima 4678 Fun wfun 5265 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 Topctop 14469 Clsdccld 14564 Cn ccn 14657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-top 14470 df-topon 14483 df-cld 14567 df-cn 14660 |
| This theorem is referenced by: hmeocld 14784 |
| Copyright terms: Public domain | W3C validator |