ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnclima GIF version

Theorem cnclima 12234
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2115 . . . . . 6 𝐽 = 𝐽
2 eqid 2115 . . . . . 6 𝐾 = 𝐾
31, 2cnf 12215 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
43adantr 272 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹: 𝐽 𝐾)
5 ffun 5233 . . . . . 6 (𝐹: 𝐽 𝐾 → Fun 𝐹)
6 funcnvcnv 5140 . . . . . 6 (Fun 𝐹 → Fun 𝐹)
7 imadif 5161 . . . . . 6 (Fun 𝐹 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
85, 6, 73syl 17 . . . . 5 (𝐹: 𝐽 𝐾 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
9 fimacnv 5503 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
109difeq1d 3159 . . . . 5 (𝐹: 𝐽 𝐾 → ((𝐹 𝐾) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
118, 10eqtr2d 2148 . . . 4 (𝐹: 𝐽 𝐾 → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
124, 11syl 14 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
132cldopn 12119 . . . 4 (𝐴 ∈ (Clsd‘𝐾) → ( 𝐾𝐴) ∈ 𝐾)
14 cnima 12231 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ( 𝐾𝐴) ∈ 𝐾) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1513, 14sylan2 282 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1612, 15eqeltrd 2191 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽)
17 cntop1 12212 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1817adantr 272 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top)
19 cnvimass 4860 . . . 4 (𝐹𝐴) ⊆ dom 𝐹
2019, 4fssdm 5245 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ⊆ 𝐽)
211iscld2 12116 . . 3 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2218, 20, 21syl2anc 406 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2316, 22mpbird 166 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  cdif 3034  wss 3037   cuni 3702  ccnv 4498  cima 4502  Fun wfun 5075  wf 5077  cfv 5081  (class class class)co 5728  Topctop 12007  Clsdccld 12104   Cn ccn 12197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-map 6498  df-top 12008  df-topon 12021  df-cld 12107  df-cn 12200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator