Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnclima | GIF version |
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnclima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2165 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | cnf 12844 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
4 | 3 | adantr 274 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | ffun 5340 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Fun 𝐹) | |
6 | funcnvcnv 5247 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
7 | imadif 5268 | . . . . . 6 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) | |
8 | 5, 6, 7 | 3syl 17 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) |
9 | fimacnv 5614 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ ∪ 𝐾) = ∪ 𝐽) | |
10 | 9 | difeq1d 3239 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝐴))) |
11 | 8, 10 | eqtr2d 2199 | . . . 4 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
12 | 4, 11 | syl 14 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
13 | 2 | cldopn 12747 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐾) → (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) |
14 | cnima 12860 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) | |
15 | 13, 14 | sylan2 284 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) |
16 | 12, 15 | eqeltrd 2243 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽) |
17 | cntop1 12841 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
18 | 17 | adantr 274 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top) |
19 | cnvimass 4967 | . . . 4 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
20 | 19, 4 | fssdm 5352 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) |
21 | 1 | iscld2 12744 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
22 | 18, 20, 21 | syl2anc 409 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
23 | 16, 22 | mpbird 166 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∖ cdif 3113 ⊆ wss 3116 ∪ cuni 3789 ◡ccnv 4603 “ cima 4607 Fun wfun 5182 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 Topctop 12635 Clsdccld 12732 Cn ccn 12825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12636 df-topon 12649 df-cld 12735 df-cn 12828 |
This theorem is referenced by: hmeocld 12952 |
Copyright terms: Public domain | W3C validator |