ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnclima GIF version

Theorem cnclima 14695
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2205 . . . . . 6 𝐽 = 𝐽
2 eqid 2205 . . . . . 6 𝐾 = 𝐾
31, 2cnf 14676 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
43adantr 276 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹: 𝐽 𝐾)
5 ffun 5428 . . . . . 6 (𝐹: 𝐽 𝐾 → Fun 𝐹)
6 funcnvcnv 5333 . . . . . 6 (Fun 𝐹 → Fun 𝐹)
7 imadif 5354 . . . . . 6 (Fun 𝐹 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
85, 6, 73syl 17 . . . . 5 (𝐹: 𝐽 𝐾 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
9 fimacnv 5709 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
109difeq1d 3290 . . . . 5 (𝐹: 𝐽 𝐾 → ((𝐹 𝐾) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
118, 10eqtr2d 2239 . . . 4 (𝐹: 𝐽 𝐾 → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
124, 11syl 14 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
132cldopn 14579 . . . 4 (𝐴 ∈ (Clsd‘𝐾) → ( 𝐾𝐴) ∈ 𝐾)
14 cnima 14692 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ( 𝐾𝐴) ∈ 𝐾) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1513, 14sylan2 286 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1612, 15eqeltrd 2282 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽)
17 cntop1 14673 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1817adantr 276 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top)
19 cnvimass 5045 . . . 4 (𝐹𝐴) ⊆ dom 𝐹
2019, 4fssdm 5440 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ⊆ 𝐽)
211iscld2 14576 . . 3 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2218, 20, 21syl2anc 411 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2316, 22mpbird 167 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  cdif 3163  wss 3166   cuni 3850  ccnv 4674  cima 4678  Fun wfun 5265  wf 5267  cfv 5271  (class class class)co 5944  Topctop 14469  Clsdccld 14564   Cn ccn 14657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-top 14470  df-topon 14483  df-cld 14567  df-cn 14660
This theorem is referenced by:  hmeocld  14784
  Copyright terms: Public domain W3C validator