![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnclima | GIF version |
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnclima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2193 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | cnf 14372 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | ffun 5406 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Fun 𝐹) | |
6 | funcnvcnv 5313 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
7 | imadif 5334 | . . . . . 6 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) | |
8 | 5, 6, 7 | 3syl 17 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) |
9 | fimacnv 5687 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ ∪ 𝐾) = ∪ 𝐽) | |
10 | 9 | difeq1d 3276 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝐴))) |
11 | 8, 10 | eqtr2d 2227 | . . . 4 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
12 | 4, 11 | syl 14 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
13 | 2 | cldopn 14275 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐾) → (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) |
14 | cnima 14388 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) | |
15 | 13, 14 | sylan2 286 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) |
16 | 12, 15 | eqeltrd 2270 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽) |
17 | cntop1 14369 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
18 | 17 | adantr 276 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top) |
19 | cnvimass 5028 | . . . 4 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
20 | 19, 4 | fssdm 5418 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) |
21 | 1 | iscld2 14272 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
22 | 18, 20, 21 | syl2anc 411 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
23 | 16, 22 | mpbird 167 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∖ cdif 3150 ⊆ wss 3153 ∪ cuni 3835 ◡ccnv 4658 “ cima 4662 Fun wfun 5248 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 Topctop 14165 Clsdccld 14260 Cn ccn 14353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-map 6704 df-top 14166 df-topon 14179 df-cld 14263 df-cn 14356 |
This theorem is referenced by: hmeocld 14480 |
Copyright terms: Public domain | W3C validator |