ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpreima GIF version

Theorem ghmpreima 13336
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmpreima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))

Proof of Theorem ghmpreima
Dummy variables 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5028 . . 3 (𝐹𝑉) ⊆ dom 𝐹
2 eqid 2193 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2193 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 13317 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
54adantr 276 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
61, 5fssdm 5418 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ⊆ (Base‘𝑆))
7 ghmgrp1 13315 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
87adantr 276 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝑆 ∈ Grp)
9 eqid 2193 . . . . . 6 (0g𝑆) = (0g𝑆)
102, 9grpidcl 13101 . . . . 5 (𝑆 ∈ Grp → (0g𝑆) ∈ (Base‘𝑆))
118, 10syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
12 eqid 2193 . . . . . . 7 (0g𝑇) = (0g𝑇)
139, 12ghmid 13319 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1413adantr 276 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
1512subg0cl 13252 . . . . . 6 (𝑉 ∈ (SubGrp‘𝑇) → (0g𝑇) ∈ 𝑉)
1615adantl 277 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑇) ∈ 𝑉)
1714, 16eqeltrd 2270 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g𝑆)) ∈ 𝑉)
185ffnd 5404 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹 Fn (Base‘𝑆))
19 elpreima 5677 . . . . 5 (𝐹 Fn (Base‘𝑆) → ((0g𝑆) ∈ (𝐹𝑉) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ 𝑉)))
2018, 19syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((0g𝑆) ∈ (𝐹𝑉) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ 𝑉)))
2111, 17, 20mpbir2and 946 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑆) ∈ (𝐹𝑉))
22 elex2 2776 . . 3 ((0g𝑆) ∈ (𝐹𝑉) → ∃𝑗 𝑗 ∈ (𝐹𝑉))
2321, 22syl 14 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ∃𝑗 𝑗 ∈ (𝐹𝑉))
24 elpreima 5677 . . . . 5 (𝐹 Fn (Base‘𝑆) → (𝑎 ∈ (𝐹𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)))
2518, 24syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (𝐹𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)))
26 elpreima 5677 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑆) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
2718, 26syl 14 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
2827adantr 276 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
29 eqid 2193 . . . . . . . . . . 11 (+g𝑆) = (+g𝑆)
307ad2antrr 488 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑆 ∈ Grp)
31 simprll 537 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑎 ∈ (Base‘𝑆))
32 simprrl 539 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑏 ∈ (Base‘𝑆))
332, 29, 30, 31, 32grpcld 13086 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
34 simpll 527 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
35 eqid 2193 . . . . . . . . . . . . 13 (+g𝑇) = (+g𝑇)
362, 29, 35ghmlin 13318 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3734, 31, 32, 36syl3anc 1249 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
38 simplr 528 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑉 ∈ (SubGrp‘𝑇))
39 simprlr 538 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹𝑎) ∈ 𝑉)
40 simprrr 540 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹𝑏) ∈ 𝑉)
4135subgcl 13254 . . . . . . . . . . . 12 ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹𝑎) ∈ 𝑉 ∧ (𝐹𝑏) ∈ 𝑉) → ((𝐹𝑎)(+g𝑇)(𝐹𝑏)) ∈ 𝑉)
4238, 39, 40, 41syl3anc 1249 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → ((𝐹𝑎)(+g𝑇)(𝐹𝑏)) ∈ 𝑉)
4337, 42eqeltrd 2270 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)
44 elpreima 5677 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑆) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4518, 44syl 14 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4645adantr 276 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4733, 43, 46mpbir2and 946 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉))
4847expr 375 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉)))
4928, 48sylbid 150 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝑏 ∈ (𝐹𝑉) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉)))
5049ralrimiv 2566 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉))
51 simprl 529 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → 𝑎 ∈ (Base‘𝑆))
52 eqid 2193 . . . . . . . . 9 (invg𝑆) = (invg𝑆)
532, 52grpinvcl 13120 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑎) ∈ (Base‘𝑆))
548, 51, 53syl2an2r 595 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑆)‘𝑎) ∈ (Base‘𝑆))
55 eqid 2193 . . . . . . . . . 10 (invg𝑇) = (invg𝑇)
562, 52, 55ghminv 13320 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑎)) = ((invg𝑇)‘(𝐹𝑎)))
5756ad2ant2r 509 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝐹‘((invg𝑆)‘𝑎)) = ((invg𝑇)‘(𝐹𝑎)))
5855subginvcl 13253 . . . . . . . . 9 ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹𝑎) ∈ 𝑉) → ((invg𝑇)‘(𝐹𝑎)) ∈ 𝑉)
5958ad2ant2l 508 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑇)‘(𝐹𝑎)) ∈ 𝑉)
6057, 59eqeltrd 2270 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)
61 elpreima 5677 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6218, 61syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6362adantr 276 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6454, 60, 63mpbir2and 946 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))
6550, 64jca 306 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))
6665ex 115 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))))
6725, 66sylbid 150 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (𝐹𝑉) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))))
6867ralrimiv 2566 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))
692, 29, 52issubg2m 13259 . . 3 (𝑆 ∈ Grp → ((𝐹𝑉) ∈ (SubGrp‘𝑆) ↔ ((𝐹𝑉) ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ (𝐹𝑉) ∧ ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))))
708, 69syl 14 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝐹𝑉) ∈ (SubGrp‘𝑆) ↔ ((𝐹𝑉) ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ (𝐹𝑉) ∧ ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))))
716, 23, 68, 70mpbir3and 1182 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wss 3153  ccnv 4658  cima 4662   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073  SubGrpcsubg 13237   GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-ghm 13311
This theorem is referenced by:  ghmnsgpreima  13339
  Copyright terms: Public domain W3C validator