ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpreima GIF version

Theorem ghmpreima 13798
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmpreima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))

Proof of Theorem ghmpreima
Dummy variables 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5090 . . 3 (𝐹𝑉) ⊆ dom 𝐹
2 eqid 2229 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2229 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 13779 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
54adantr 276 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
61, 5fssdm 5487 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ⊆ (Base‘𝑆))
7 ghmgrp1 13777 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
87adantr 276 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝑆 ∈ Grp)
9 eqid 2229 . . . . . 6 (0g𝑆) = (0g𝑆)
102, 9grpidcl 13557 . . . . 5 (𝑆 ∈ Grp → (0g𝑆) ∈ (Base‘𝑆))
118, 10syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
12 eqid 2229 . . . . . . 7 (0g𝑇) = (0g𝑇)
139, 12ghmid 13781 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1413adantr 276 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
1512subg0cl 13714 . . . . . 6 (𝑉 ∈ (SubGrp‘𝑇) → (0g𝑇) ∈ 𝑉)
1615adantl 277 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑇) ∈ 𝑉)
1714, 16eqeltrd 2306 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g𝑆)) ∈ 𝑉)
185ffnd 5473 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹 Fn (Base‘𝑆))
19 elpreima 5753 . . . . 5 (𝐹 Fn (Base‘𝑆) → ((0g𝑆) ∈ (𝐹𝑉) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ 𝑉)))
2018, 19syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((0g𝑆) ∈ (𝐹𝑉) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ 𝑉)))
2111, 17, 20mpbir2and 950 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑆) ∈ (𝐹𝑉))
22 elex2 2816 . . 3 ((0g𝑆) ∈ (𝐹𝑉) → ∃𝑗 𝑗 ∈ (𝐹𝑉))
2321, 22syl 14 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ∃𝑗 𝑗 ∈ (𝐹𝑉))
24 elpreima 5753 . . . . 5 (𝐹 Fn (Base‘𝑆) → (𝑎 ∈ (𝐹𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)))
2518, 24syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (𝐹𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)))
26 elpreima 5753 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑆) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
2718, 26syl 14 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
2827adantr 276 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
29 eqid 2229 . . . . . . . . . . 11 (+g𝑆) = (+g𝑆)
307ad2antrr 488 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑆 ∈ Grp)
31 simprll 537 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑎 ∈ (Base‘𝑆))
32 simprrl 539 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑏 ∈ (Base‘𝑆))
332, 29, 30, 31, 32grpcld 13542 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
34 simpll 527 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
35 eqid 2229 . . . . . . . . . . . . 13 (+g𝑇) = (+g𝑇)
362, 29, 35ghmlin 13780 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3734, 31, 32, 36syl3anc 1271 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
38 simplr 528 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑉 ∈ (SubGrp‘𝑇))
39 simprlr 538 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹𝑎) ∈ 𝑉)
40 simprrr 540 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹𝑏) ∈ 𝑉)
4135subgcl 13716 . . . . . . . . . . . 12 ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹𝑎) ∈ 𝑉 ∧ (𝐹𝑏) ∈ 𝑉) → ((𝐹𝑎)(+g𝑇)(𝐹𝑏)) ∈ 𝑉)
4238, 39, 40, 41syl3anc 1271 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → ((𝐹𝑎)(+g𝑇)(𝐹𝑏)) ∈ 𝑉)
4337, 42eqeltrd 2306 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)
44 elpreima 5753 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑆) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4518, 44syl 14 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4645adantr 276 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4733, 43, 46mpbir2and 950 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉))
4847expr 375 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉)))
4928, 48sylbid 150 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝑏 ∈ (𝐹𝑉) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉)))
5049ralrimiv 2602 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉))
51 simprl 529 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → 𝑎 ∈ (Base‘𝑆))
52 eqid 2229 . . . . . . . . 9 (invg𝑆) = (invg𝑆)
532, 52grpinvcl 13576 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑎) ∈ (Base‘𝑆))
548, 51, 53syl2an2r 597 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑆)‘𝑎) ∈ (Base‘𝑆))
55 eqid 2229 . . . . . . . . . 10 (invg𝑇) = (invg𝑇)
562, 52, 55ghminv 13782 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑎)) = ((invg𝑇)‘(𝐹𝑎)))
5756ad2ant2r 509 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝐹‘((invg𝑆)‘𝑎)) = ((invg𝑇)‘(𝐹𝑎)))
5855subginvcl 13715 . . . . . . . . 9 ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹𝑎) ∈ 𝑉) → ((invg𝑇)‘(𝐹𝑎)) ∈ 𝑉)
5958ad2ant2l 508 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑇)‘(𝐹𝑎)) ∈ 𝑉)
6057, 59eqeltrd 2306 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)
61 elpreima 5753 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6218, 61syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6362adantr 276 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6454, 60, 63mpbir2and 950 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))
6550, 64jca 306 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))
6665ex 115 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))))
6725, 66sylbid 150 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (𝐹𝑉) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))))
6867ralrimiv 2602 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))
692, 29, 52issubg2m 13721 . . 3 (𝑆 ∈ Grp → ((𝐹𝑉) ∈ (SubGrp‘𝑆) ↔ ((𝐹𝑉) ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ (𝐹𝑉) ∧ ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))))
708, 69syl 14 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝐹𝑉) ∈ (SubGrp‘𝑆) ↔ ((𝐹𝑉) ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ (𝐹𝑉) ∧ ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))))
716, 23, 68, 70mpbir3and 1204 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wss 3197  ccnv 4717  cima 4721   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Grpcgrp 13528  invgcminusg 13529  SubGrpcsubg 13699   GrpHom cghm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-ghm 13773
This theorem is referenced by:  ghmnsgpreima  13801
  Copyright terms: Public domain W3C validator