ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdi GIF version

Theorem lgsdi 13732
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsdi (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdi
Dummy variables 𝑘 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 978 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 lgsdilem 13722 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)))
31, 2sylanb 282 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)))
4 ancom 264 . . . . 5 (((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ (𝑀 · 𝑁) < 0))
5 ifbi 3546 . . . . 5 ((((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ (𝑀 · 𝑁) < 0)) → if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1))
64, 5ax-mp 5 . . . 4 if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1)
7 ancom 264 . . . . . 6 ((𝑀 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑀 < 0))
8 ifbi 3546 . . . . . 6 (((𝑀 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑀 < 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1))
97, 8ax-mp 5 . . . . 5 if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1)
10 ancom 264 . . . . . 6 ((𝑁 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑁 < 0))
11 ifbi 3546 . . . . . 6 (((𝑁 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑁 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1))
1210, 11ax-mp 5 . . . . 5 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)
139, 12oveq12i 5865 . . . 4 (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1))
143, 6, 133eqtr4g 2228 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
15 simpl2 996 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℤ)
16 simpl3 997 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
1715, 16zmulcld 9340 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
1815zcnd 9335 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℂ)
1916zcnd 9335 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
20 simprl 526 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0)
21 0z 9223 . . . . . . . . . . 11 0 ∈ ℤ
22 zapne 9286 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
2315, 21, 22sylancl 411 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
2420, 23mpbird 166 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 # 0)
25 simprr 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0)
26 zapne 9286 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2716, 21, 26sylancl 411 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2825, 27mpbird 166 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 # 0)
2918, 19, 24, 28mulap0d 8576 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) # 0)
30 zapne 9286 . . . . . . . . 9 (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
3117, 21, 30sylancl 411 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
3229, 31mpbid 146 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
33 nnabscl 11064 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
3417, 32, 33syl2anc 409 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
35 nnuz 9522 . . . . . 6 ℕ = (ℤ‘1)
3634, 35eleqtrdi 2263 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘1))
37 simpl1 995 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝐴 ∈ ℤ)
38 eqid 2170 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
3938lgsfcl3 13716 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ)
4037, 15, 20, 39syl3anc 1233 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ)
41 elnnuz 9523 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
4241biimpri 132 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
43 ffvelrn 5629 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
4440, 42, 43syl2an 287 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
4544zcnd 9335 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℂ)
46 eqid 2170 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
4746lgsfcl3 13716 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
4837, 16, 25, 47syl3anc 1233 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
49 ffvelrn 5629 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
5048, 42, 49syl2an 287 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
5150zcnd 9335 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
52 simpr 109 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
5315ad2antrr 485 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
5420ad2antrr 485 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
5516ad2antrr 485 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
5625ad2antrr 485 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
57 pcmul 12255 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt (𝑀 · 𝑁)) = ((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁)))
5852, 53, 54, 55, 56, 57syl122anc 1242 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (𝑀 · 𝑁)) = ((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁)))
5958oveq2d 5869 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) = ((𝐴 /L 𝑘)↑((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁))))
6037ad2antrr 485 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
61 prmz 12065 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
6261adantl 275 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
63 lgscl 13709 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
6460, 62, 63syl2anc 409 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
6564zcnd 9335 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
66 pczcl 12252 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
6752, 55, 56, 66syl12anc 1231 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
68 pczcl 12252 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑘 pCnt 𝑀) ∈ ℕ0)
6952, 53, 54, 68syl12anc 1231 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) ∈ ℕ0)
7065, 67, 69expaddd 10611 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁))) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
7159, 70eqtrd 2203 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
72 iftrue 3531 . . . . . . . . 9 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
7372adantl 275 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
74 iftrue 3531 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
75 iftrue 3531 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
7674, 75oveq12d 5871 . . . . . . . . 9 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
7776adantl 275 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
7871, 73, 773eqtr4rd 2214 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
79 1t1e1 9030 . . . . . . . . 9 (1 · 1) = 1
80 iffalse 3534 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
81 iffalse 3534 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
8280, 81oveq12d 5871 . . . . . . . . 9 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
83 iffalse 3534 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = 1)
8479, 82, 833eqtr4a 2229 . . . . . . . 8 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
8584adantl 275 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
86 prmdc 12084 . . . . . . . . . 10 (𝑘 ∈ ℕ → DECID 𝑘 ∈ ℙ)
87 exmiddc 831 . . . . . . . . . 10 (DECID 𝑘 ∈ ℙ → (𝑘 ∈ ℙ ∨ ¬ 𝑘 ∈ ℙ))
8886, 87syl 14 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ∈ ℙ ∨ ¬ 𝑘 ∈ ℙ))
8942, 88syl 14 . . . . . . . 8 (𝑘 ∈ (ℤ‘1) → (𝑘 ∈ ℙ ∨ ¬ 𝑘 ∈ ℙ))
9089adantl 275 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → (𝑘 ∈ ℙ ∨ ¬ 𝑘 ∈ ℙ))
9178, 85, 90mpjaodan 793 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
92 eleq1w 2231 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
93 oveq2 5861 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
94 oveq1 5860 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
9593, 94oveq12d 5871 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
9692, 95ifbieq1d 3548 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
9742adantl 275 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
98 zexpcl 10491 . . . . . . . . . 10 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑀) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
9964, 69, 98syl2anc 409 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
100 1zzd 9239 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ ℤ)
10197, 86syl 14 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → DECID 𝑘 ∈ ℙ)
10299, 100, 101ifcldadc 3555 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ ℤ)
10338, 96, 97, 102fvmptd3 5589 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
104 oveq1 5860 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
10593, 104oveq12d 5871 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
10692, 105ifbieq1d 3548 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
107 zexpcl 10491 . . . . . . . . . 10 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑁) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℤ)
10864, 67, 107syl2anc 409 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℤ)
109108, 100, 101ifcldadc 3555 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ ℤ)
11046, 106, 97, 109fvmptd3 5589 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
111103, 110oveq12d 5871 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
112 eqid 2170 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))
113 oveq1 5860 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 pCnt (𝑀 · 𝑁)) = (𝑘 pCnt (𝑀 · 𝑁)))
11493, 113oveq12d 5871 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
11592, 114ifbieq1d 3548 . . . . . . 7 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
11617ad2antrr 485 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝑀 · 𝑁) ∈ ℤ)
11732ad2antrr 485 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝑀 · 𝑁) ≠ 0)
118 pczcl 12252 . . . . . . . . . 10 ((𝑘 ∈ ℙ ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → (𝑘 pCnt (𝑀 · 𝑁)) ∈ ℕ0)
11952, 116, 117, 118syl12anc 1231 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (𝑀 · 𝑁)) ∈ ℕ0)
120 zexpcl 10491 . . . . . . . . 9 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt (𝑀 · 𝑁)) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) ∈ ℤ)
12164, 119, 120syl2anc 409 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) ∈ ℤ)
122121, 100, 101ifcldadc 3555 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) ∈ ℤ)
123112, 115, 97, 122fvmptd3 5589 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
12491, 111, 1233eqtr4rd 2214 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
12536, 45, 51, 124prod3fmul 11504 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁)))))
12637, 15, 16, 20, 25, 38lgsdilem2 13731 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))))
12737, 16, 15, 25, 20, 46lgsdilem2 13731 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑁 · 𝑀))))
12818, 19mulcomd 7941 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
129128fveq2d 5500 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑁 · 𝑀)))
130129fveq2d 5500 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑁 · 𝑀))))
131127, 130eqtr4d 2206 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁))))
132126, 131oveq12d 5871 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁)))))
133125, 132eqtr4d 2206 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
13414, 133oveq12d 5871 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
135112lgsval4 13715 . . 3 ((𝐴 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (𝐴 /L (𝑀 · 𝑁)) = (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))))
13637, 17, 32, 135syl3anc 1233 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))))
13738lgsval4 13715 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝐴 /L 𝑀) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))))
13837, 15, 20, 137syl3anc 1233 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L 𝑀) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))))
13946lgsval4 13715 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
14037, 16, 25, 139syl3anc 1233 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
141138, 140oveq12d 5871 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
142 neg1z 9244 . . . . . . 7 -1 ∈ ℤ
143142a1i 9 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → -1 ∈ ℤ)
144 1zzd 9239 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 1 ∈ ℤ)
145 zdclt 9289 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 < 0)
14615, 21, 145sylancl 411 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → DECID 𝑀 < 0)
147 zdclt 9289 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
14837, 21, 147sylancl 411 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → DECID 𝐴 < 0)
149 dcan2 929 . . . . . . 7 (DECID 𝑀 < 0 → (DECID 𝐴 < 0 → DECID (𝑀 < 0 ∧ 𝐴 < 0)))
150146, 148, 149sylc 62 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → DECID (𝑀 < 0 ∧ 𝐴 < 0))
151143, 144, 150ifcldcd 3561 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℤ)
152151zcnd 9335 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
15340ffvelrnda 5631 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
154 zmulcl 9265 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑘 · 𝑣) ∈ ℤ)
155154adantl 275 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ (𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑘 · 𝑣) ∈ ℤ)
15635, 144, 153, 155seqf 10417 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))):ℕ⟶ℤ)
157 nnabscl 11064 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
15815, 20, 157syl2anc 409 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑀) ∈ ℕ)
159156, 158ffvelrnd 5632 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) ∈ ℤ)
160159zcnd 9335 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) ∈ ℂ)
161 zdclt 9289 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
16216, 21, 161sylancl 411 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → DECID 𝑁 < 0)
163 dcan2 929 . . . . . . 7 (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0)))
164162, 148, 163sylc 62 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → DECID (𝑁 < 0 ∧ 𝐴 < 0))
165143, 144, 164ifcldcd 3561 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℤ)
166165zcnd 9335 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
16748ffvelrnda 5631 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
16835, 144, 167, 155seqf 10417 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))):ℕ⟶ℤ)
169 nnabscl 11064 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
17016, 25, 169syl2anc 409 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℕ)
171168, 170ffvelrnd 5632 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ)
172171zcnd 9335 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
173152, 160, 166, 172mul4d 8074 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
174141, 173eqtrd 2203 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
175134, 136, 1743eqtr4d 2213 1 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wne 2340  ifcif 3526   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  (class class class)co 5853  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  -cneg 8091   # cap 8500  cn 8878  0cn0 9135  cz 9212  cuz 9487  seqcseq 10401  cexp 10475  abscabs 10961  cprime 12061   pCnt cpc 12238   /L clgs 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165  df-pc 12239  df-lgs 13693
This theorem is referenced by:  lgssq2  13736  lgsdinn0  13743
  Copyright terms: Public domain W3C validator