ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkv GIF version

Theorem fodjumkv 7226
Description: A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o (𝜑𝑀 ∈ Markov)
fodjumkv.fo (𝜑𝐹:𝑀onto→(𝐴𝐵))
Assertion
Ref Expression
fodjumkv (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem fodjumkv
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.o . 2 (𝜑𝑀 ∈ Markov)
2 fodjumkv.fo . 2 (𝜑𝐹:𝑀onto→(𝐴𝐵))
3 fveq2 5558 . . . . . . 7 (𝑏 = 𝑧 → (inl‘𝑏) = (inl‘𝑧))
43eqeq2d 2208 . . . . . 6 (𝑏 = 𝑧 → ((𝐹𝑎) = (inl‘𝑏) ↔ (𝐹𝑎) = (inl‘𝑧)))
54cbvrexv 2730 . . . . 5 (∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏) ↔ ∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧))
6 ifbi 3581 . . . . 5 ((∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏) ↔ ∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧)) → if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o))
75, 6ax-mp 5 . . . 4 if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o)
87mpteq2i 4120 . . 3 (𝑎𝑀 ↦ if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑎𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o))
9 fveqeq2 5567 . . . . . 6 (𝑎 = 𝑦 → ((𝐹𝑎) = (inl‘𝑧) ↔ (𝐹𝑦) = (inl‘𝑧)))
109rexbidv 2498 . . . . 5 (𝑎 = 𝑦 → (∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧)))
1110ifbid 3582 . . . 4 (𝑎 = 𝑦 → if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
1211cbvmptv 4129 . . 3 (𝑎𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o)) = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
138, 12eqtri 2217 . 2 (𝑎𝑀 ↦ if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
141, 2, 13fodjumkvlemres 7225 1 (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1506  wcel 2167  wne 2367  wrex 2476  c0 3450  ifcif 3561  cmpt 4094  ontowfo 5256  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111  Markovcmarkov 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-map 6709  df-dju 7104  df-inl 7113  df-inr 7114  df-markov 7218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator