ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkv GIF version

Theorem fodjumkv 6984
Description: A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o (𝜑𝑀 ∈ Markov)
fodjumkv.fo (𝜑𝐹:𝑀onto→(𝐴𝐵))
Assertion
Ref Expression
fodjumkv (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem fodjumkv
Dummy variables 𝑎 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.o . 2 (𝜑𝑀 ∈ Markov)
2 fodjumkv.fo . 2 (𝜑𝐹:𝑀onto→(𝐴𝐵))
3 fveq2 5375 . . . . . . 7 (𝑏 = 𝑧 → (inl‘𝑏) = (inl‘𝑧))
43eqeq2d 2126 . . . . . 6 (𝑏 = 𝑧 → ((𝐹𝑎) = (inl‘𝑏) ↔ (𝐹𝑎) = (inl‘𝑧)))
54cbvrexv 2629 . . . . 5 (∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏) ↔ ∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧))
6 ifbi 3458 . . . . 5 ((∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏) ↔ ∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧)) → if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o))
75, 6ax-mp 7 . . . 4 if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o)
87mpteq2i 3975 . . 3 (𝑎𝑀 ↦ if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑎𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o))
9 fveqeq2 5384 . . . . . 6 (𝑎 = 𝑦 → ((𝐹𝑎) = (inl‘𝑧) ↔ (𝐹𝑦) = (inl‘𝑧)))
109rexbidv 2412 . . . . 5 (𝑎 = 𝑦 → (∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧)))
1110ifbid 3459 . . . 4 (𝑎 = 𝑦 → if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
1211cbvmptv 3984 . . 3 (𝑎𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑎) = (inl‘𝑧), ∅, 1o)) = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
138, 12eqtri 2135 . 2 (𝑎𝑀 ↦ if(∃𝑏𝐴 (𝐹𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
141, 2, 13fodjumkvlemres 6983 1 (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  wex 1451  wcel 1463  wne 2282  wrex 2391  c0 3329  ifcif 3440  cmpt 3949  ontowfo 5079  cfv 5081  1oc1o 6260  cdju 6874  inlcinl 6882  Markovcmarkov 6975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-1o 6267  df-2o 6268  df-map 6498  df-dju 6875  df-inl 6884  df-inr 6885  df-markov 6976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator