| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjumkv | GIF version | ||
| Description: A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjumkv.o | ⊢ (𝜑 → 𝑀 ∈ Markov) |
| fodjumkv.fo | ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| Ref | Expression |
|---|---|
| fodjumkv | ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjumkv.o | . 2 ⊢ (𝜑 → 𝑀 ∈ Markov) | |
| 2 | fodjumkv.fo | . 2 ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) | |
| 3 | fveq2 5578 | . . . . . . 7 ⊢ (𝑏 = 𝑧 → (inl‘𝑏) = (inl‘𝑧)) | |
| 4 | 3 | eqeq2d 2217 | . . . . . 6 ⊢ (𝑏 = 𝑧 → ((𝐹‘𝑎) = (inl‘𝑏) ↔ (𝐹‘𝑎) = (inl‘𝑧))) |
| 5 | 4 | cbvrexv 2739 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) |
| 6 | ifbi 3591 | . . . . 5 ⊢ ((∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) → if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) |
| 8 | 7 | mpteq2i 4132 | . . 3 ⊢ (𝑎 ∈ 𝑀 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑎 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) |
| 9 | fveqeq2 5587 | . . . . . 6 ⊢ (𝑎 = 𝑦 → ((𝐹‘𝑎) = (inl‘𝑧) ↔ (𝐹‘𝑦) = (inl‘𝑧))) | |
| 10 | 9 | rexbidv 2507 | . . . . 5 ⊢ (𝑎 = 𝑦 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧))) |
| 11 | 10 | ifbid 3592 | . . . 4 ⊢ (𝑎 = 𝑦 → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 12 | 11 | cbvmptv 4141 | . . 3 ⊢ (𝑎 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 13 | 8, 12 | eqtri 2226 | . 2 ⊢ (𝑎 ∈ 𝑀 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 14 | 1, 2, 13 | fodjumkvlemres 7263 | 1 ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ≠ wne 2376 ∃wrex 2485 ∅c0 3460 ifcif 3571 ↦ cmpt 4106 –onto→wfo 5270 ‘cfv 5272 1oc1o 6497 ⊔ cdju 7141 inlcinl 7149 Markovcmarkov 7255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-1o 6504 df-2o 6505 df-map 6739 df-dju 7142 df-inl 7151 df-inr 7152 df-markov 7256 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |