Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuomni | GIF version |
Description: A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
Ref | Expression |
---|---|
fodjuomni | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuomni.o | . 2 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
2 | fodjuomni.fo | . 2 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
3 | fveq2 5496 | . . . . . . 7 ⊢ (𝑏 = 𝑧 → (inl‘𝑏) = (inl‘𝑧)) | |
4 | 3 | eqeq2d 2182 | . . . . . 6 ⊢ (𝑏 = 𝑧 → ((𝐹‘𝑎) = (inl‘𝑏) ↔ (𝐹‘𝑎) = (inl‘𝑧))) |
5 | 4 | cbvrexv 2697 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) |
6 | ifbi 3546 | . . . . 5 ⊢ ((∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) → if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) |
8 | 7 | mpteq2i 4076 | . . 3 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑎 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) |
9 | fveq2 5496 | . . . . . . 7 ⊢ (𝑎 = 𝑦 → (𝐹‘𝑎) = (𝐹‘𝑦)) | |
10 | 9 | eqeq1d 2179 | . . . . . 6 ⊢ (𝑎 = 𝑦 → ((𝐹‘𝑎) = (inl‘𝑧) ↔ (𝐹‘𝑦) = (inl‘𝑧))) |
11 | 10 | rexbidv 2471 | . . . . 5 ⊢ (𝑎 = 𝑦 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧))) |
12 | 11 | ifbid 3547 | . . . 4 ⊢ (𝑎 = 𝑦 → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
13 | 12 | cbvmptv 4085 | . . 3 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
14 | 8, 13 | eqtri 2191 | . 2 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
15 | 1, 2, 14 | fodjuomnilemres 7124 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 ∅c0 3414 ifcif 3526 ↦ cmpt 4050 –onto→wfo 5196 ‘cfv 5198 1oc1o 6388 ⊔ cdju 7014 inlcinl 7022 Omnicomni 7110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-1o 6395 df-2o 6396 df-map 6628 df-dju 7015 df-inl 7024 df-inr 7025 df-omni 7111 |
This theorem is referenced by: ctssexmid 7126 exmidunben 12381 exmidsbthrlem 14054 sbthomlem 14057 |
Copyright terms: Public domain | W3C validator |