| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuomni | GIF version | ||
| Description: A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| Ref | Expression |
|---|---|
| fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
| fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| Ref | Expression |
|---|---|
| fodjuomni | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjuomni.o | . 2 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
| 2 | fodjuomni.fo | . 2 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
| 3 | fveq2 5589 | . . . . . . 7 ⊢ (𝑏 = 𝑧 → (inl‘𝑏) = (inl‘𝑧)) | |
| 4 | 3 | eqeq2d 2218 | . . . . . 6 ⊢ (𝑏 = 𝑧 → ((𝐹‘𝑎) = (inl‘𝑏) ↔ (𝐹‘𝑎) = (inl‘𝑧))) |
| 5 | 4 | cbvrexv 2740 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) |
| 6 | ifbi 3596 | . . . . 5 ⊢ ((∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) → if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) |
| 8 | 7 | mpteq2i 4139 | . . 3 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑎 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) |
| 9 | fveq2 5589 | . . . . . . 7 ⊢ (𝑎 = 𝑦 → (𝐹‘𝑎) = (𝐹‘𝑦)) | |
| 10 | 9 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑎 = 𝑦 → ((𝐹‘𝑎) = (inl‘𝑧) ↔ (𝐹‘𝑦) = (inl‘𝑧))) |
| 11 | 10 | rexbidv 2508 | . . . . 5 ⊢ (𝑎 = 𝑦 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧))) |
| 12 | 11 | ifbid 3597 | . . . 4 ⊢ (𝑎 = 𝑦 → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 13 | 12 | cbvmptv 4148 | . . 3 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 14 | 8, 13 | eqtri 2227 | . 2 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 15 | 1, 2, 14 | fodjuomnilemres 7265 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 ∅c0 3464 ifcif 3575 ↦ cmpt 4113 –onto→wfo 5278 ‘cfv 5280 1oc1o 6508 ⊔ cdju 7154 inlcinl 7162 Omnicomni 7251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-1o 6515 df-2o 6516 df-map 6750 df-dju 7155 df-inl 7164 df-inr 7165 df-omni 7252 |
| This theorem is referenced by: ctssexmid 7267 exmidunben 12872 exmidsbthrlem 16102 sbthomlem 16105 |
| Copyright terms: Public domain | W3C validator |