ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomni GIF version

Theorem fodjuomni 7149
Description: A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypotheses
Ref Expression
fodjuomni.o (πœ‘ β†’ 𝑂 ∈ Omni)
fodjuomni.fo (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
Assertion
Ref Expression
fodjuomni (πœ‘ β†’ (βˆƒπ‘₯ π‘₯ ∈ 𝐴 ∨ 𝐴 = βˆ…))
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   πœ‘(π‘₯)   𝐡(π‘₯)   𝐹(π‘₯)   𝑂(π‘₯)

Proof of Theorem fodjuomni
Dummy variables π‘Ž 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuomni.o . 2 (πœ‘ β†’ 𝑂 ∈ Omni)
2 fodjuomni.fo . 2 (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
3 fveq2 5517 . . . . . . 7 (𝑏 = 𝑧 β†’ (inlβ€˜π‘) = (inlβ€˜π‘§))
43eqeq2d 2189 . . . . . 6 (𝑏 = 𝑧 β†’ ((πΉβ€˜π‘Ž) = (inlβ€˜π‘) ↔ (πΉβ€˜π‘Ž) = (inlβ€˜π‘§)))
54cbvrexv 2706 . . . . 5 (βˆƒπ‘ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘) ↔ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§))
6 ifbi 3556 . . . . 5 ((βˆƒπ‘ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘) ↔ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§)) β†’ if(βˆƒπ‘ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘), βˆ…, 1o) = if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§), βˆ…, 1o))
75, 6ax-mp 5 . . . 4 if(βˆƒπ‘ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘), βˆ…, 1o) = if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§), βˆ…, 1o)
87mpteq2i 4092 . . 3 (π‘Ž ∈ 𝑂 ↦ if(βˆƒπ‘ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘), βˆ…, 1o)) = (π‘Ž ∈ 𝑂 ↦ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§), βˆ…, 1o))
9 fveq2 5517 . . . . . . 7 (π‘Ž = 𝑦 β†’ (πΉβ€˜π‘Ž) = (πΉβ€˜π‘¦))
109eqeq1d 2186 . . . . . 6 (π‘Ž = 𝑦 β†’ ((πΉβ€˜π‘Ž) = (inlβ€˜π‘§) ↔ (πΉβ€˜π‘¦) = (inlβ€˜π‘§)))
1110rexbidv 2478 . . . . 5 (π‘Ž = 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§) ↔ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§)))
1211ifbid 3557 . . . 4 (π‘Ž = 𝑦 β†’ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§), βˆ…, 1o) = if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§), βˆ…, 1o))
1312cbvmptv 4101 . . 3 (π‘Ž ∈ 𝑂 ↦ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘§), βˆ…, 1o)) = (𝑦 ∈ 𝑂 ↦ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§), βˆ…, 1o))
148, 13eqtri 2198 . 2 (π‘Ž ∈ 𝑂 ↦ if(βˆƒπ‘ ∈ 𝐴 (πΉβ€˜π‘Ž) = (inlβ€˜π‘), βˆ…, 1o)) = (𝑦 ∈ 𝑂 ↦ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§), βˆ…, 1o))
151, 2, 14fodjuomnilemres 7148 1 (πœ‘ β†’ (βˆƒπ‘₯ π‘₯ ∈ 𝐴 ∨ 𝐴 = βˆ…))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∨ wo 708   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  βˆƒwrex 2456  βˆ…c0 3424  ifcif 3536   ↦ cmpt 4066  β€“ontoβ†’wfo 5216  β€˜cfv 5218  1oc1o 6412   βŠ” cdju 7038  inlcinl 7046  Omnicomni 7134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-1o 6419  df-2o 6420  df-map 6652  df-dju 7039  df-inl 7048  df-inr 7049  df-omni 7135
This theorem is referenced by:  ctssexmid  7150  exmidunben  12429  exmidsbthrlem  14855  sbthomlem  14858
  Copyright terms: Public domain W3C validator