![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fodjuomni | GIF version |
Description: A condition which ensures π΄ is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | β’ (π β π β Omni) |
fodjuomni.fo | β’ (π β πΉ:πβontoβ(π΄ β π΅)) |
Ref | Expression |
---|---|
fodjuomni | β’ (π β (βπ₯ π₯ β π΄ β¨ π΄ = β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuomni.o | . 2 β’ (π β π β Omni) | |
2 | fodjuomni.fo | . 2 β’ (π β πΉ:πβontoβ(π΄ β π΅)) | |
3 | fveq2 5517 | . . . . . . 7 β’ (π = π§ β (inlβπ) = (inlβπ§)) | |
4 | 3 | eqeq2d 2189 | . . . . . 6 β’ (π = π§ β ((πΉβπ) = (inlβπ) β (πΉβπ) = (inlβπ§))) |
5 | 4 | cbvrexv 2706 | . . . . 5 β’ (βπ β π΄ (πΉβπ) = (inlβπ) β βπ§ β π΄ (πΉβπ) = (inlβπ§)) |
6 | ifbi 3556 | . . . . 5 β’ ((βπ β π΄ (πΉβπ) = (inlβπ) β βπ§ β π΄ (πΉβπ) = (inlβπ§)) β if(βπ β π΄ (πΉβπ) = (inlβπ), β , 1o) = if(βπ§ β π΄ (πΉβπ) = (inlβπ§), β , 1o)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 β’ if(βπ β π΄ (πΉβπ) = (inlβπ), β , 1o) = if(βπ§ β π΄ (πΉβπ) = (inlβπ§), β , 1o) |
8 | 7 | mpteq2i 4092 | . . 3 β’ (π β π β¦ if(βπ β π΄ (πΉβπ) = (inlβπ), β , 1o)) = (π β π β¦ if(βπ§ β π΄ (πΉβπ) = (inlβπ§), β , 1o)) |
9 | fveq2 5517 | . . . . . . 7 β’ (π = π¦ β (πΉβπ) = (πΉβπ¦)) | |
10 | 9 | eqeq1d 2186 | . . . . . 6 β’ (π = π¦ β ((πΉβπ) = (inlβπ§) β (πΉβπ¦) = (inlβπ§))) |
11 | 10 | rexbidv 2478 | . . . . 5 β’ (π = π¦ β (βπ§ β π΄ (πΉβπ) = (inlβπ§) β βπ§ β π΄ (πΉβπ¦) = (inlβπ§))) |
12 | 11 | ifbid 3557 | . . . 4 β’ (π = π¦ β if(βπ§ β π΄ (πΉβπ) = (inlβπ§), β , 1o) = if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β , 1o)) |
13 | 12 | cbvmptv 4101 | . . 3 β’ (π β π β¦ if(βπ§ β π΄ (πΉβπ) = (inlβπ§), β , 1o)) = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β , 1o)) |
14 | 8, 13 | eqtri 2198 | . 2 β’ (π β π β¦ if(βπ β π΄ (πΉβπ) = (inlβπ), β , 1o)) = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β , 1o)) |
15 | 1, 2, 14 | fodjuomnilemres 7148 | 1 β’ (π β (βπ₯ π₯ β π΄ β¨ π΄ = β )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 β¨ wo 708 = wceq 1353 βwex 1492 β wcel 2148 βwrex 2456 β c0 3424 ifcif 3536 β¦ cmpt 4066 βontoβwfo 5216 βcfv 5218 1oc1o 6412 β cdju 7038 inlcinl 7046 Omnicomni 7134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-1o 6419 df-2o 6420 df-map 6652 df-dju 7039 df-inl 7048 df-inr 7049 df-omni 7135 |
This theorem is referenced by: ctssexmid 7150 exmidunben 12429 exmidsbthrlem 14855 sbthomlem 14858 |
Copyright terms: Public domain | W3C validator |