![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fodjuomni | GIF version |
Description: A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomni.o | ⊢ (𝜑 → 𝑂 ∈ Omni) |
fodjuomni.fo | ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
Ref | Expression |
---|---|
fodjuomni | ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuomni.o | . 2 ⊢ (𝜑 → 𝑂 ∈ Omni) | |
2 | fodjuomni.fo | . 2 ⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) | |
3 | fveq2 5534 | . . . . . . 7 ⊢ (𝑏 = 𝑧 → (inl‘𝑏) = (inl‘𝑧)) | |
4 | 3 | eqeq2d 2201 | . . . . . 6 ⊢ (𝑏 = 𝑧 → ((𝐹‘𝑎) = (inl‘𝑏) ↔ (𝐹‘𝑎) = (inl‘𝑧))) |
5 | 4 | cbvrexv 2719 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) |
6 | ifbi 3569 | . . . . 5 ⊢ ((∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧)) → if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) |
8 | 7 | mpteq2i 4105 | . . 3 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑎 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) |
9 | fveq2 5534 | . . . . . . 7 ⊢ (𝑎 = 𝑦 → (𝐹‘𝑎) = (𝐹‘𝑦)) | |
10 | 9 | eqeq1d 2198 | . . . . . 6 ⊢ (𝑎 = 𝑦 → ((𝐹‘𝑎) = (inl‘𝑧) ↔ (𝐹‘𝑦) = (inl‘𝑧))) |
11 | 10 | rexbidv 2491 | . . . . 5 ⊢ (𝑎 = 𝑦 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧))) |
12 | 11 | ifbid 3570 | . . . 4 ⊢ (𝑎 = 𝑦 → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
13 | 12 | cbvmptv 4114 | . . 3 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑧), ∅, 1o)) = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
14 | 8, 13 | eqtri 2210 | . 2 ⊢ (𝑎 ∈ 𝑂 ↦ if(∃𝑏 ∈ 𝐴 (𝐹‘𝑎) = (inl‘𝑏), ∅, 1o)) = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
15 | 1, 2, 14 | fodjuomnilemres 7176 | 1 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 ∨ 𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∃wrex 2469 ∅c0 3437 ifcif 3549 ↦ cmpt 4079 –onto→wfo 5233 ‘cfv 5235 1oc1o 6434 ⊔ cdju 7066 inlcinl 7074 Omnicomni 7162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-1o 6441 df-2o 6442 df-map 6676 df-dju 7067 df-inl 7076 df-inr 7077 df-omni 7163 |
This theorem is referenced by: ctssexmid 7178 exmidunben 12477 exmidsbthrlem 15229 sbthomlem 15232 |
Copyright terms: Public domain | W3C validator |