| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgdom | GIF version | ||
| Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| tgdom | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4263 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
| 2 | inss1 3424 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵 | |
| 3 | vpwex 4262 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 3 | inex2 4218 | . . . . . 6 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ V |
| 5 | 4 | elpw 3655 | . . . . 5 ⊢ ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵) |
| 6 | 2, 5 | mpbir 146 | . . . 4 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵) |
| 8 | unieq 3896 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) |
| 10 | eltg4i 14723 | . . . . . . 7 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 11 | 10 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 12 | eltg4i 14723 | . . . . . . 7 ⊢ (𝑦 ∈ (topGen‘𝐵) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
| 13 | 12 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) |
| 14 | 9, 11, 13 | 3eqtr4d 2272 | . . . . 5 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦) |
| 15 | 14 | ex 115 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦)) |
| 16 | pweq 3652 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 17 | 16 | ineq2d 3405 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) |
| 18 | 15, 17 | impbid1 142 | . . 3 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦)) |
| 19 | 7, 18 | dom2 6924 | . 2 ⊢ (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| 20 | 1, 19 | syl 14 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 class class class wbr 4082 ‘cfv 5317 ≼ cdom 6884 topGenctg 13282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-dom 6887 df-topgen 13288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |