ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgdom GIF version

Theorem tgdom 13575
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)

Proof of Theorem tgdom
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4181 . 2 (𝐡 ∈ 𝑉 β†’ 𝒫 𝐡 ∈ V)
2 inss1 3356 . . . . 5 (𝐡 ∩ 𝒫 π‘₯) βŠ† 𝐡
3 vpwex 4180 . . . . . . 7 𝒫 π‘₯ ∈ V
43inex2 4139 . . . . . 6 (𝐡 ∩ 𝒫 π‘₯) ∈ V
54elpw 3582 . . . . 5 ((𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡 ↔ (𝐡 ∩ 𝒫 π‘₯) βŠ† 𝐡)
62, 5mpbir 146 . . . 4 (𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡
76a1i 9 . . 3 (π‘₯ ∈ (topGenβ€˜π΅) β†’ (𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡)
8 unieq 3819 . . . . . . 7 ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) β†’ βˆͺ (𝐡 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 𝑦))
98adantl 277 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ βˆͺ (𝐡 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 𝑦))
10 eltg4i 13558 . . . . . . 7 (π‘₯ ∈ (topGenβ€˜π΅) β†’ π‘₯ = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
1110ad2antrr 488 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ π‘₯ = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
12 eltg4i 13558 . . . . . . 7 (𝑦 ∈ (topGenβ€˜π΅) β†’ 𝑦 = βˆͺ (𝐡 ∩ 𝒫 𝑦))
1312ad2antlr 489 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ 𝑦 = βˆͺ (𝐡 ∩ 𝒫 𝑦))
149, 11, 133eqtr4d 2220 . . . . 5 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ π‘₯ = 𝑦)
1514ex 115 . . . 4 ((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) β†’ ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) β†’ π‘₯ = 𝑦))
16 pweq 3579 . . . . 5 (π‘₯ = 𝑦 β†’ 𝒫 π‘₯ = 𝒫 𝑦)
1716ineq2d 3337 . . . 4 (π‘₯ = 𝑦 β†’ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦))
1815, 17impbid1 142 . . 3 ((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) β†’ ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) ↔ π‘₯ = 𝑦))
197, 18dom2 6775 . 2 (𝒫 𝐡 ∈ V β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)
201, 19syl 14 1 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2738   ∩ cin 3129   βŠ† wss 3130  π’« cpw 3576  βˆͺ cuni 3810   class class class wbr 4004  β€˜cfv 5217   β‰Ό cdom 6739  topGenctg 12703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-dom 6742  df-topgen 12709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator