ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgdom GIF version

Theorem tgdom 14740
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom (𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)

Proof of Theorem tgdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4263 . 2 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
2 inss1 3424 . . . . 5 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
3 vpwex 4262 . . . . . . 7 𝒫 𝑥 ∈ V
43inex2 4218 . . . . . 6 (𝐵 ∩ 𝒫 𝑥) ∈ V
54elpw 3655 . . . . 5 ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵)
62, 5mpbir 146 . . . 4 (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵
76a1i 9 . . 3 (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵)
8 unieq 3896 . . . . . . 7 ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
98adantl 277 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
10 eltg4i 14723 . . . . . . 7 (𝑥 ∈ (topGen‘𝐵) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
1110ad2antrr 488 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
12 eltg4i 14723 . . . . . . 7 (𝑦 ∈ (topGen‘𝐵) → 𝑦 = (𝐵 ∩ 𝒫 𝑦))
1312ad2antlr 489 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = (𝐵 ∩ 𝒫 𝑦))
149, 11, 133eqtr4d 2272 . . . . 5 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦)
1514ex 115 . . . 4 ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦))
16 pweq 3652 . . . . 5 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
1716ineq2d 3405 . . . 4 (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
1815, 17impbid1 142 . . 3 ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦))
197, 18dom2 6924 . 2 (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵)
201, 19syl 14 1 (𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3887   class class class wbr 4082  cfv 5317  cdom 6884  topGenctg 13282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-dom 6887  df-topgen 13288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator