| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgdom | GIF version | ||
| Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| tgdom | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4240 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
| 2 | inss1 3401 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵 | |
| 3 | vpwex 4239 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 3 | inex2 4195 | . . . . . 6 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ V |
| 5 | 4 | elpw 3632 | . . . . 5 ⊢ ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵) |
| 6 | 2, 5 | mpbir 146 | . . . 4 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵) |
| 8 | unieq 3873 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) |
| 10 | eltg4i 14642 | . . . . . . 7 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 11 | 10 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 12 | eltg4i 14642 | . . . . . . 7 ⊢ (𝑦 ∈ (topGen‘𝐵) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
| 13 | 12 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) |
| 14 | 9, 11, 13 | 3eqtr4d 2250 | . . . . 5 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦) |
| 15 | 14 | ex 115 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦)) |
| 16 | pweq 3629 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 17 | 16 | ineq2d 3382 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) |
| 18 | 15, 17 | impbid1 142 | . . 3 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦)) |
| 19 | 7, 18 | dom2 6889 | . 2 ⊢ (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| 20 | 1, 19 | syl 14 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 class class class wbr 4059 ‘cfv 5290 ≼ cdom 6849 topGenctg 13201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-dom 6852 df-topgen 13207 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |